TELEVITIS
TELEVITIS. Viticultura de precisión y nuevas tecnologías
Argitalpenak (104) Ikertzaileren baten partaidetza izan duten argitalpenak
2024
-
Deep learning modelling for non-invasive grape bunch detection under diverse occlusion conditions
Computers and Electronics in Agriculture, Vol. 226
-
Image analysis with deep learning for early detection of downy mildew in grapevine
Scientia Horticulturae, Vol. 331
-
In-field disease symptom detection and localisation using explainable deep learning: Use case for downy mildew in grapevine
Computers and Electronics in Agriculture, Vol. 226
-
Use of the hyperspectral imaging to estimate the volatile composition of Tempranillo grape berries during ripening
Scientia Horticulturae, Vol. 337
2023
-
Application of near-infrared spectroscopy for the estimation of volatile compounds in Tempranillo Blanco grape berries during ripening
Journal of the Science of Food and Agriculture, Vol. 103, Núm. 13, pp. 6317-6329
-
Early yield prediction in different grapevine varieties using computer vision and machine learning
Precision Agriculture, Vol. 24, Núm. 2, pp. 407-435
-
Editorial: Resilience of grapevine to climate change: from plant physiology to adaptation strategies, volume II
Frontiers in Plant Science
-
Evolutionary conditional GANs for supervised data augmentation: The case of assessing berry number per cluster in grapevine
Applied Soft Computing, Vol. 147
-
Inteligencia artificial y visión por ordenador para evaluar los componentes del rendimiento de la vid en viñedos comerciales
BIO Web of Conferences: 44th World Congress of Vine and Wine
-
Monitorization of Varietal Aroma Composition Dynamics during Ripening in Intact Vitis vinifera L. Tempranillo Blanco Berries by Hyperspectral Imaging
Journal of Agricultural and Food Chemistry, Vol. 71, Núm. 5, pp. 2616-2627
-
Multi-sensor spectral fusion to model grape composition using deep learning
Information Fusion, Vol. 99
-
NIR attribute selection for the development of vineyard water status predictive models
Biosystems Engineering, Vol. 229, pp. 167-178
-
Towards the automation of NIR spectroscopy to assess vineyard water status spatial–temporal variability from a ground moving vehicle
Scientific Reports, Vol. 13, Núm. 1
-
Using artificial intelligence (AI) for grapevine disease detection based on images
BIO Web of Conferences: 44th World Congress of Vine and Wine
2022
-
Assessment of downy mildew in grapevine using computer vision and fuzzy logic. Development and validation of a new method
Oeno One, Vol. 56, Núm. 3, pp. 41-53
-
Combination of multispectral imagery, environmental data and thermography for on-the-go monitoring of the grapevine water status in commercial vineyards
European Journal of Agronomy, Vol. 140
-
Deep learning and computer vision for assessing the number of actual berries in commercial vineyards
Biosystems Engineering, Vol. 218, pp. 175-188
-
Editorial: Resilience of grapevine to climate change: From plant physiology to adaptation strategies
Frontiers in Plant Science
-
Low-Cost Electronic Nose for Wine Variety Identification through Machine Learning Algorithms
Agronomy, Vol. 12, Núm. 11
-
Message from the Technical Program Chairs
2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2022 - Proceedings