On a connection between the discrete fractional Laplacian and superdiffusion

  1. Ciaurri, Ó. 1
  2. Lizama, C. 2
  3. Roncal, L. 1
  4. Varona, J.L. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  2. 2 Universidad de Santiago de Chile
    info

    Universidad de Santiago de Chile

    Santiago de Chile, Chile

    GRID grid.412179.8

Journal:
Applied Mathematics Letters

ISSN: 0893-9659

Year of publication: 2015

Volume: 49

Pages: 119-125

Type: Article

Export: RIS
DOI: 10.1016/j.aml.2015.05.007 SCOPUS: 2-s2.0-84930935663 WoS: 000358630100018 GOOGLE SCHOLAR

Metrics

Cited by

  • Scopus Cited by: 9 (12-06-2021)

Journal Citation Reports

  • Year 2015
  • Journal Impact Factor: 1.659
  • Best Quartile: Q1
  • Area: MATHEMATICS, APPLIED Quartile: Q1 Rank in area: 29/254 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2015
  • SJR Journal Impact: 1.125
  • Best Quartile: Q1
  • Area: Applied Mathematics Quartile: Q1 Rank in area: 107/545

CiteScore

  • Year 2015
  • CiteScore of the Journal : 3.5
  • Area: Applied Mathematics Percentile: 83

Abstract

Abstract We relate the fractional powers of the discrete Laplacian with a standard time-fractional derivative in the sense of Liouville by encoding the iterative nature of the discrete operator through a time-fractional memory term. © 2015 Elsevier Ltd.