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ÓSCAR CIAURRI, CARLOS LIZAMA, LUZ RONCAL, AND JUAN LUIS VARONA

Abstract. We relate the fractional powers of the discrete Laplacian with a standard time-
fractional derivative in the sense of Liouville by encoding the iterative nature of the discrete
operator through a time-fractional memory term.

1. Introduction

Let 0 < α < 1 be given. Our concern in this paper is the study of the connection between
two seemingly distinct classes of partial differential equations that have a mixed character, i.e.
that can be modeled both in continuous time as well as in discrete space

(1) Dtv(n, t) = (−∆d)αv(n, t), t > 0, n ∈ Z,

and

(2) D
1/α
t u(n, t) = (−∆d)u(n, t), t > 0, n ∈ Z.

In (1), Dt denotes the continuous derivative in the variable t, D
1/α
t denotes the fractional de-

rivative of order 1/α in the sense of Liouville (left-sided) and (−∆d)α denotes the fractional
powers of order α of the unidimensional discrete Laplacian, introduced in [3] (where other
operators in Harmonic Analysis, such as the discrete Riesz transform, square functions, con-
jugate harmonic functions and the Poisson semigroup were also studied). See Section 2 for
definitions. For β := 1

α > 1, equation (2) describes superdiffusive phenomena in time. It
models anomalous superdiffusion in which a particle cloud spreads faster than the classical dif-
fusion model predicts. The connection between order in time and space for partial differential
equations is a surprising phenomena that seems not to be addressed for the discrete fractional
Laplacian. It shows that the spatial-Laplacian of fractional order is entirely translated into
temporal regularization. First studies on this unexpected property appear in [7] for the uni-
dimensional continuous Laplacian. There, it was observed that ordinary PDEs of first order
in space are transformed into PDEs of half-th order in time and second order in space, and
that from an applied perspective (Stokes problem) this property shows numerical advantages.
For the N -dimensional and continuous bi-Laplacian, the connection appeared in [5, Example
2.14], where also an abstract setting for higher powers is studied. For stochastic processes the
relation seems to be more analyzed, but only very recently by H. Allouba [1] and B. Baeumer,
M.M. Meerschaert and E. Nane [2, Theorems 3.1 and 3.9]. See also the references therein.

In this paper we are able to prove that, for appropriate initial values in the Lebesgue space
`∞(Z) and 0 < α < 1, the solution of problems (1) and (2) is the same, and that it admits
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an explicit representation in convolution form by means of a special kernel. This is shown in
Theorem 3, that is the main result of this work.

We define the discrete fractional Laplacian via the discrete Fourier transform, because this
way is the most suitable to prove Theorem 3. Moreover, this definition coincides with the gen-
uine definition of the fractional powers of a more general linear second order partial differential
operator L by means of the semigroup generated by L, as shown by P.R. Stinga and J.L. Tor-
rea in [15]. In particular, we provide the discrete counterpart of the formula for the fractional
Laplacian via the semigroup due to Stinga and Torrea [15]; it is presented in Theorem 2 and
has its own interest.

2. Preliminaries

In order to establish and clarify the meaning of the equations (1) and (2), and the relation-
ship between their solutions, we need to define several continuous and discrete operators. In
particular, in what follows we are going to give precise definitions for several kinds of Fourier
transforms and fractional operators on some spaces, and to provide some of their properties.

For a given sequence f , we define the discrete Fourier transform

FZ(f)(θ) =
∑
n∈Z

f(n)einθ, θ ∈ T,

where T ≡ R/(2πZ) is the unidimensional torus, that we identify with the interval (−π, π].
The inverse discrete Fourier transform is obtained by the formula

F−1
Z (ϕ)(n) =

1

2π

∫ π

−π
ϕ(θ)e−inθ dθ, n ∈ Z,

for a given function ϕ. Therefore

f(n) =
1

2π

∫ π

−π
FZ(f)(θ)e−inθ dθ, n ∈ Z.

It is easily verified that

FZ(f ∗ g)(θ) = FZ(f)(θ)FZ(g)(θ),

where ∗ denotes the usual convolution in Z.
We are going to motivate our definition of the discrete fractional Laplacian; the details can

be seen in [3]. Observe that from the discrete Laplacian

∆df(n) := f(n+ 1)− 2f(n) + f(n− 1), n ∈ Z

(such as defined in [4]), and using the identity 2 sin2 θ
2 = 1− cos θ, we obtain

FZ(−∆df)(θ) = 4 sin2(θ/2)FZ(f)(θ).

Let f ∈ `∞(Z) be given. By taking the inverse discrete Fourier transform, the discrete fractional
Laplacian of order α > 0 is then defined by

(3) (−∆d)αf(n) :=
∑
k∈Z

Kα(n− k)f(k), n ∈ Z,

where

Kα(n) :=
1

2π

∫ π

−π
(4 sin2(θ/2))

α
e−inθ dθ, n ∈ Z.

Then, it is clear that

(4) FZ(Kα)(θ) = (4 sin2(θ/2))
α
, θ ∈ (−π, π].
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Figure 1. Graphical representation of (1 + |n|2α+1)Kα(n) for α = 0.3, 0.7, 0.9 and 1.

Remark 1. Using [13, formula 2.5.12 (22), p. 402] we obtain the following explicit expression
for the kernel Kα(n) in terms of the Gamma function:

(5) Kα(n) =
(−1)nΓ(2α+ 1)

Γ(1 + α+ n)Γ(1 + α− n)
, n ∈ Z.

In particular, it shows that definition (3) coincides with the generalized fractional difference
corresponding to the type 1 central derivative considered by M.D. Ortigueira in [10, 11]. See also
[12, formula (2) and formula (36)]. Because of this connection, some properties for the discrete
Laplacian can be directly deduced. For example, associativity (−∆d)α(−∆d)β = (−∆d)α+β

provided α+ β > −1. Moreover,

|Kα(n)| ∼ Γ(2α+ 1)

π
|n|−2α−1, n→ ±∞,

see [10, formula (4.24)]. In particular, it shows that the series on the right hand side of (3)
converges for f ∈ `∞(Z). For other properties, we refer to [12, Section 2.2].

In Figure 1 we show the aspect of Kα(n) (for −15 ≤ n ≤ 15) for several values of the
parameter α; actually, to compensate the big decay of Kα(n) when n→ ±∞ and to get a more
significative picture, we represent the kernel multiplied by 1 + |n|2α+1. In particular, we clearly
observe that Kα(n) > 0 only when n = 0 (of course, this can be also proved from (5)). From
this and the identity

(−∆d)αf(n) :=
∑
k∈Z

Kα(n− k)f(k) =
∑
k 6=n

Kα(n− k)f(k) +Kα(0)f(n)

we deduce that (−∆d)αf(n0) ≤ 0 whenever f(k) ≥ 0 for all k 6= n0 and f(n0) ≤ 0. It extends
[3, Theorem 1].

In what follows, we present the definition and some properties of the Liouville fractional de-
rivative on the whole axis R. More detailed information may be found in the book [6, Chapter II,
Section 2.3].

We denote

(6) gβ(t) :=
tβ−1

Γ(β)
, t > 0, β > 0,
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and in case β = 0 we set g0(t) := δ0, the Dirac measure concentrated at the origin. Recall also
the well-known formula for the Gamma function

(7)

∫ ∞
0

e−λtgβ(t) dt =
1

λβ
, λ > 0, β > 0;

see, for instance, [13, formula 2.3.3 (1), p. 322]. The Liouville (left-sided) fractional derivative
of order α > 0 is defined by

Dα
t h(t) =

dn

dtn

∫ t

−∞
gn−α(t− s)h(s) ds

where n = bαc + 1, t ∈ R. In particular, when α = m ∈ N0, then D0
t h(t) = h(t) and

Dm
t h(t) = h(m)(t) where h(m)(t) is the usual derivative of h(t) of order m.
Let h be in the N -dimensional Schwartz’s class S. The Fourier transform of h is given by

FRN (h)(ξ) =
1

(2π)N/2

∫
RN

h(x)e−ix·ξ dx, ξ ∈ RN .

We recall that the continuous fractional Laplacian (−∆)α with 0 < α < 1 can be defined in
several equivalent ways. It is defined via the Fourier transform as

FRN ((−∆)αh)(ξ) = |ξ|2αFRN (h)(ξ).

An equivalent definition, obtained by computing the inverse Fourier transform (see [8]), is given
by the singular integral

(−∆)αh(x) = CN,α P.V.

∫
RN

h(x)− h(y)

‖x− y‖N+2α
dy,

where CN,α is an explicit positive constant. A comparable formula, that avoids the computation
of the inverse Fourier transform, and provides the pointwise formula above in a simple way,
can be found for example in [14, Lemma 2.1, p. 35]:

(−∆)αh(x) =
1

Γ(−α)

∫ ∞
0

(et∆h(x)− h(x))
dt

t1+α

where et∆ is the heat-diffusion semigroup.

3. The discrete Laplacian and superdiffusion

We recall from [3, Section 2] that the discrete heat semigroup is defined by

et∆df(n) :=
∑
m∈Z

e−2tIn−m(2t)f(m),

where Ik is the modified Bessel function of the first kind and order k ∈ Z, defined as

Ik(t) =
∞∑
m=0

1

m! Γ(m+ k + 1)

( t
2

)2m+k
.

Several properties of Ik are listed in [3, Section 8]. In [3, Proposition 1] it was proved that
{et∆d}t≥0 is a positive Markovian diffusion semigroup. Moreover, for each ϕ ∈ `∞, the function
u(n, t) = et∆dϕ(n) is a solution of the discrete heat equation, that is (1) with α = 1.

The following result corresponds to the discrete counterpart of the formula with the semi-
group for the fractional Laplacian [15, Lemma 5.1].

Theorem 2. For all 0 < α < 1 and f ∈ `∞(Z) the following holds:

(−∆d)αf(n) =
1

Γ(−α)

∫ ∞
0

(et∆df(n)− f(n))
dt

t1+α
, n ∈ Z.
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Proof. By definition (3) and the identity (4) we have

FZ((−∆d)αf)(θ) = FZ(Kα)(θ)FZ(f)(θ) = (4 sin2(θ/2))αFZ(f)(θ).

On the other hand, we have

FZ(et∆df)(θ) = e−4t sin2(θ/2)FZ(f)(θ),

see the proof of (iii) in [3, Proposition 1]. The claim then follows from the identity

1

Γ(−α)

∫ ∞
0

(e−4t sin2(θ/2) − 1)
dt

t1+α
= (4 sin2(θ/2))

α
,

that can be proven using integration by parts and the formula (7). �

Let α > 0 be given. We define

Kα
t (n) :=

1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α
e−inθ dθ, t ∈ R, n ∈ Z.

The following is the main result of this paper.

Theorem 3. For every α that satisfies 0 < α < 1 and ϕ ∈ `∞(Z), the function

(8) u(n, t) =
∑
k∈Z

Kα
t (n− k)ϕ(k), t ≥ 0, n ∈ Z,

solves the problems

(9)

{
Dtu(n, t) = (−∆d)αu(n, t), t > 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z,
and

(10)

{
D

1/α
t u(n, t) = (−∆d)u(n, t), t > 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z.

Proof. We first prove that (8) solves (9). Indeed, by taking discrete Fourier transform in the
variable n, the equation (9) becomes

(11)

DtFZ(u(·, t))(θ) =
(

4 sin2 θ
2

)α
FZ(u(·, t))(θ), t > 0,

FZ(u(·, 0))(θ) = FZ(ϕ)(θ),

and a solution to (11) is

FZ(u(·, t))(θ) = et
(

4 sin2 θ
2

)α
FZ(ϕ)(θ), t > 0.

Now, by applying inverse discrete Fourier transform, we have

u(n, t) =
1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α
e−inθFZ(ϕ)(θ) dθ =

1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α
e−inθ

∑
k∈Z

ϕ(k)eikθ dθ

=
∑
k∈Z

ϕ(k)
1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α
e−i(n−k)θ dθ =

∑
k∈Z

ϕ(k)Kα
t (n− k).

Secondly, we prove that (8) solves (10). In fact, we have

D
1/α
t u(n, t) =

∑
k∈Z

D
1/α
t Kα

t (n− k)ϕ(k)

where, by interchanging the order of integration,

D
1/α
t Kα

t (n) =
1

2π

∫ π

−π
D

1/α
t e(·)

(
4 sin2 θ

2

)α
(t)e−inθ dθ.
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Since 0 < α < 1, there exists m ∈ N such that 1
m+1 < α ≤ 1

m for m ∈ N\{1}, or 1
m+1 < α < 1

m

for m = 1. Remembering the notation for gβ in (6), we obtain

D
1/α
t

(
e(·)
(

4 sin2 θ
2

)α)
(t) =

dm+1

dtm+1

∫ t

−∞
gm+1−1/α(t− s)es

(
4 sin2 θ

2

)α
ds

=
dm+1

dtm+1

(
et
(

4 sin2 θ
2

)α)∫ ∞
0

gm+1−1/α(τ)e−τ
(

4 sin2 θ
2

)α
dτ

=
(

4 sin2 θ

2

)(m+1)α
et
(

4 sin2 θ
2

)α 1(
(4 sin2 θ

2)
α)m+1−1/α

=
(

4 sin2 θ

2

)
et
(

4 sin2 θ
2

)α
,

where we used (7) in the third equality. (It is well known that the β-order Liouville (left-sided)

fractional derivative Dβ
t of eλt is λβeλt, for λ > 0; see, for example, [6, formula (2.3.11), p. 88]

or [9, Example 2.6]. We give here a direct proof for the sake of completeness.) Therefore

(12) D
1/α
t u(n, t) =

∑
k∈Z

( 1

2π

∫ π

−π
(2− 2 cos θ)et

(
4 sin2 θ

2

)α
e−i(n−k)θ dθ

)
ϕ(k).

On the other hand, using (8) we have

(13)

∆du(n, t) = u(n+ 1, t)− 2u(n, t) + u(n− 1, t)

=
∑
k∈Z

(
Kα
t (n+ 1− k)− 2Kα

t (n− k) +Kα
t (n− 1− k)

)
ϕ(k)

=
∑
k∈Z

( 1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α(
e−i(n−k+1)θ − 2e−i(n−k)θ + e−i(n−k−1)θ

)
dθ
)
ϕ(k)

= −
∑
k∈Z

( 1

2π

∫ π

−π
et
(

4 sin2 θ
2

)α
(2 cos θ − 2)e−i(n−k)θ dθ

)
ϕ(k).

Combining (12) with (13) we obtain (10). �

Remark 4. We note that if α ≥ 1
2 , then 1 < 1

α ≤ 2 in (10), and then the equation should have
two initial conditions. By using (3), a calculation shows that in such case the second initial
condition reads

ut(n, 0) = (−∆d)αϕ(n).

More generally, if 1
m+1 ≤ α < 1

m , m ∈ N, then we have m extra initial conditions in (10) and

they are ut(n, 0) = (−∆d)αϕ(n), utt(n, 0) = (−∆d)2αϕ(n), . . ., u
(m)
t (n, 0) = (−∆d)mαϕ(n).
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y Ciencia de la Computación, Casilla 307, Correo 2, Santiago, Chile

E-mail address: carlos.lizama@usach.cl


