On a connection between the discrete fractional Laplacian and superdiffusion

  1. Ciaurri, Ó. 1
  2. Lizama, C. 2
  3. Roncal, L. 1
  4. Varona, J.L. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Santiago de Chile
    info

    Universidad de Santiago de Chile

    Santiago de Chile, Chile

    ROR https://ror.org/02ma57s91

Revue:
Applied Mathematics Letters

ISSN: 0893-9659

Année de publication: 2015

Volumen: 49

Pages: 119-125

Type: Article

beta Ver similares en nube de resultados
DOI: 10.1016/J.AML.2015.05.007 SCOPUS: 2-s2.0-84930935663 WoS: WOS:000358630100018 GOOGLE SCHOLAR

D'autres publications dans: Applied Mathematics Letters

Dépôt institutionnel: lock_openAccès ouvert Postprint lockAccès ouvert Editor

Résumé

Abstract We relate the fractional powers of the discrete Laplacian with a standard time-fractional derivative in the sense of Liouville by encoding the iterative nature of the discrete operator through a time-fractional memory term. © 2015 Elsevier Ltd.