Weighted Lp boundedness of Fourier series with respect to generalized Jacobi weights

  1. Guadalupe Hernández, José Javier 1
  2. Pérez Riera, Mario 1
  3. Ruiz Blasco, Francisco José 1
  4. Varona Malumbres, Juan Luis 1
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

Revista:
Publicacions matematiques

ISSN: 0214-1493

Año de publicación: 1991

Volumen: 35

Número: 2

Páginas: 449-459

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.5565/PUBLMAT_35291_08 DIALNET GOOGLE SCHOLAR lock_openDDD editor

Otras publicaciones en: Publicacions matematiques

Repositorio institucional: lock_openAcceso abierto Editor lock_openAcceso abierto Postprint

Resumen

Let w be a generalized Jacobi weight on the interval [-1,1] and, for each function f, let Snf denote the n-th partial sum of the Fourier series of f in the orthogonal polynomials associated to w. We prove a result about uniform boundedness of the operators Sn in some weighted Lp spaces. The study of the norms of the kernels Kn related to the operators Sn allows us to obtain a relation between the Fourier series with respect to different generalized Jacobi weights.