WEIGHTED L^{p}-BOUNDEDNESS OF FOURIER SERIES WITH RESPECT TO GENERALIZED JACOBI WEIGHTS

José J. Guadalupe, Mario Pérez Francisco J. Ruiz and Juan L. Varona*

Abstract
Let w be a generalized Jacobi weight on the interval $[-1,1]$ and, for each function f, let $S_{n} f$ denote the n-th partial sum of the Fourier series of f in the orthogonal polynomials associated to w. We prove a result about uniform boundedness of the operators S_{n} in some weighted L^{P} spaces. The study of the norms of the kernels K_{n} related to the operators S_{n} allows us to obtain a relation between the Fourier series with respect to different generalized Jacobi weights.

Let w be a generalized Jacobi weight, that is,

$$
w(x)=h(x)(1-x)^{\alpha}(1+x)^{\beta} \prod_{i=1}^{N}\left|x-t_{i}\right|^{\gamma_{i}}, x \in[-1,1]
$$

where
a) $\alpha, \beta, \gamma_{i}>-1, t_{i} \in(-\mathrm{I}, \mathrm{I}), t_{i} \neq t_{3} \forall i \neq j$;
b) h is a positive, continuous function on $[-1,1]$ and $w(h, \delta) \delta^{-1} \in L^{1}(0,1)$, $w(h, \delta)$ being the modulus of continuity of h.

Let $d \mu=w(x) d x$ on $[-1,1]$ and let $S_{n}(n \geq 0)$ be the n-th partial sum of the Fourier series in the orthonormal polynomials with respect to $d \mu$. The study of the boundedness

$$
\begin{equation*}
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(\nu^{p} d \mu\right)}, \tag{1}
\end{equation*}
$$

where

$$
u(x)=(1-x)^{a}(1+x)^{b} \prod_{i=1}^{N}\left|x-t_{i}\right|^{g_{i}}, \quad a, b, g_{i} \in \mathbb{R}
$$

and $\quad v(x)=(1-x)^{A}(1+x)^{B} \prod_{i=1}^{N}\left|x-t_{i}\right|^{G_{i}}, \quad A, B, G_{i} \in \mathbb{R}$
was done by Badkov ([1]) in the case $u=v$ by means of a direct estimation of the kernels $K_{n}(x, y)$ associated with the polynomials orthogonal with respect to $d \mu$. Later, one of us ([10]) considered the same problem, with u and v not necessarily equal; his method consists of an appropriate use of the theory of A_{p} weights. He found conditions for (1) which generalized those obtained for $u=v$ by Badkov. However, this result, which we state below, follows only in the case $\gamma_{i} \geq 0, i=1, \ldots, N$.

Theorem 1. Let $\gamma_{i} \geq 0, i=1, \ldots, N$ and $1<p<\infty$. If the inequalities

$$
\left\{\begin{array}{l}
A+(\alpha+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{4}, \frac{\alpha+1}{2}\right\} \tag{2}\\
B+(\beta+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{4}, \frac{\beta+1}{2}\right\} \\
G_{i}+\left(\gamma_{i}+1\right)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{2}, \frac{\gamma_{i}+1}{2}\right\} \quad(i=1, \ldots, N)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
a+(\alpha+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{4}, \frac{\alpha+1}{2}\right\} \tag{3}\\
b+(\beta+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{4}, \frac{\beta+1}{2}\right\} \\
g_{i}+\left(\gamma_{i}+1\right)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{2}, \frac{\gamma_{i}+1}{2}\right\} \quad(i=1, \ldots, N)
\end{array}\right.
$$

and

$$
\begin{equation*}
A \leq a, \quad B \leq b, \quad G_{i} \leq g_{i} \tag{4}
\end{equation*}
$$

hold, then
$\exists C>0$ such that $\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{P}\left(v^{P} d, k\right)} \quad \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N}$.
The objective of this paper is to show that the result remains true without the restriction $\gamma_{i} \geq 0$ and that conditions (2), (3) and (4) are also necessary for the uniform boundedness:

Theorem 2. Let $1<p<\infty$. Then, there exists $C>0$ such that

$$
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} d \mu\right)} \quad \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N},
$$

if and only if the inequalities (2), (3) and (4) are satisfied.
For the sake of completeness, we give a brief sketch of the proof of theorem 1 (see also [10]). By using Pollard's decomposition of the kernels $K_{n}(x, y)$ (see
[8], [5]), the uniform boundedness of S_{n} can be reduced to that of the Hilbert transform with pairs of weights

$$
\left(\left|P_{n+1}(x)\right|^{p} u(x)^{p} w(x),\left|Q_{n}(x)\right|^{-p}\left(1-x^{2}\right)^{-p} v(x)^{p} w(x)^{1-p}\right)
$$

and

$$
\left(\left|Q_{n}(x)\right|^{p}\left(1-x^{2}\right)^{p} u(x)^{p} w(x),\left|P_{n+1}(x)\right|^{-p} v(x)^{p} w(x)^{1-p}\right)
$$

Q_{n} being the n-th orthonormal polynomial relative to the measure $\left(1-x^{2}\right) d \mu$. Using now Hunt-Muckenhoupt-Wheeden and Neugebauer results (see [2], [6]), together with some known estimates for generalized Jacobi polynomials (see (8) below), for the above uniform boundedness the following conditions turn out to be sufficient:

$$
\left(u_{n}^{\delta}, v_{n}^{\delta}\right) \in A_{p}((-1,1))
$$

and

$$
\left(\bar{u}_{n}^{\delta}, \bar{v}_{n}^{\delta}\right) \in A_{p}((-1,1))
$$

for some $\delta>1$, with A_{p} constants independent of n, where

$$
\begin{aligned}
u_{n}(x)= & (1-x)^{a p+\alpha}\left(1-x+n^{-2}\right)^{-p(2 \alpha+1) / 4} \\
& \times(1+x)^{b p+\beta}\left(1+x+n^{-2}\right)^{-p(2 \beta+1) / 4} \\
& \times \prod_{i=1}^{N}\left|x-t_{i}\right|^{g_{i} p+\gamma_{i}}\left(\left|x-t_{i}\right|+n^{-1}\right)^{-p \gamma_{i} / 2} \\
v_{n}(x)= & (1-x)^{A p+\alpha(1-p)+p}\left(1-x+n^{-2}\right)^{p(2 \alpha+3) / 4} \\
& \times(1+x)^{B p+\beta(1-p)+p}\left(1+x+n^{-2}\right)^{p(2 \beta+3) / 4} \\
& \times \prod_{i=1}^{N}\left|x-t_{i}\right|^{G_{i} p+\gamma_{i}(1-p)}\left(\left|x-t_{i}\right|+n^{-1}\right)^{p \gamma_{i} / 2}
\end{aligned}
$$

and similar expressions for \bar{u}_{n} and \bar{v}_{n}.
These conditions are easy to check using the simpler result (see [10]):
Lemma 3. Let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers converging to 0 . Let $7, s, R, S \in \mathbb{R}$. Then,

$$
\left(|x|^{r}\left(|x|+x_{n}\right)^{s},|x|^{R}\left(|x|+x_{n}\right)^{S}\right) \in A_{p}((-1,1))
$$

with a constant independent of n if and only if the following inequalities hold:

$$
\begin{array}{rrc}
r>-1 ; & R<p-1 ; & R \leq r \\
r+s>-1 ; & R+S<p-1 ; & R+S \leq r+s
\end{array}
$$

At least in the case $u=v$ (thus $g_{i}=G_{i}, \forall i$), inequality $R \leq r$ requires $\gamma_{i} \geq 0$ $\forall i$. But, with this assumption, theorem 1 follows.

Let us introduce now some notation: $\left\{P_{n}(x)\right\},\left\{k_{n}\right\}$ and $\left\{K_{n}(x, y)\right\}$ will be, respectively, the orthonormal polynomials, their leading coefficients and the kernels relative to $d \mu$; if $c \in(-1,1),\left\{P_{n}^{c}(x)\right\},\left\{k_{n}^{c}\right\}$ and $\left\{K_{n}^{c}(x, y)\right\}$ will be the corresponding to $(x-c)^{2} d \mu$. Then, it is not difficult to establish $\forall n \in \mathbb{N}$ the relations

$$
\begin{equation*}
K_{n}(x, y)=(x-c)(y-c) K_{n-1}^{c}(x, y)+\frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
K_{n}(x, c)=\frac{k_{n}}{k_{n}^{c}} P_{n}(c) P_{n}^{c}(x)-\frac{k_{n-1}^{c}}{k_{n+1}} P_{n+1}(c) P_{n-1}^{c}(x) \tag{6}
\end{equation*}
$$

It can be also shown (see [4, theorems 10 and 11], and $\{9$, pag. 212]) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{k_{n}}{k_{n}^{c}}=\lim _{n \rightarrow \infty} \frac{k_{n-1}^{c}}{k_{n+1}}=\frac{1}{2} \tag{7}
\end{equation*}
$$

If we define
$d(x, n)=\left(1-x+n^{-2}\right)^{-(2 \alpha+1) / 4}\left(1+x+n^{-2}\right)^{-(2 \beta+1) / 4} \prod_{i=1}^{N}\left(\left|x-t_{i}\right|+n^{-1}\right)^{-\gamma_{i} / 2}$,
it is known ([1]) that there exists a constant C such that $\forall x \in[-1,1], \forall n \in \mathbb{N}$

$$
\begin{equation*}
\left|P_{n}(x)\right| \leq C d(x, n) \tag{8}
\end{equation*}
$$

There are also some well-known estimates for the kernels, one of them being this ([7, pag. 4 and pag. 119, theorem 25]): if $c \in(-1,1)$ and the factor $|x-c|$ occurs in w with an exponent γ, there exist some positive constants C_{1} and C_{2}, depending on c, such that $\forall n \in \mathbb{N}$

$$
\begin{equation*}
C_{1} n^{\gamma+1} \leq K_{n}(c, c) \leq C_{2} n^{\gamma+1} \tag{9}
\end{equation*}
$$

From now on, all constants will be denoted C, so by C we will mean a constant, possibly different in each occurrence. Using (6), (7) and (8) we obtain the following result:

Proposition 4. Let $1<p<\infty, 1 / p+1 / q=1$ and suppose the inequality (3) holds. Let $-1<c<1$ and let γ and g be the exponents of $|x-c|$ in w and u, respectively. Then, there exists a positive constant C such that $\forall n \geq 0$;

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)} \leq \begin{cases}C n^{(\gamma+1) / q-g} & \text { if } g<(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{\gamma / 2}(\log n)^{1 / p} & \text { if } g=(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{\gamma / 2} & \text { if }(\gamma+1)(1 / 2-1 / p)+1 / 2<g\end{cases}
$$

Proof: From (8) it follows that $\left|P_{n}(c)\right| \leq C n^{\gamma / 2}$. Since $\left\{P_{n}^{c}\right\}$ is the sequence associated with $(x-c)^{2} d \mu$, it also follows from (8) that

$$
\left|P_{n}^{c}(x)\right| \leq C\left(|x-c|+n^{-1}\right)^{-1} d(x, n)
$$

Now, from (6) and (7) we get:

$$
\begin{equation*}
\left|K_{n}(x, c)\right| \leq C n^{\gamma / 2}\left(|x-c|+n^{-1}\right)^{-1} d(x, n) \tag{10}
\end{equation*}
$$

Let us take $\varepsilon>0$ such that $\left|t_{i}-c\right|>\varepsilon$ for all $t_{i} \neq c$. We can write:

$$
\begin{gathered}
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \\
=\int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x+\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x
\end{gathered}
$$

Using (10), we obtain for the first term

$$
\begin{aligned}
& \int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \\
& \leq C n^{p \gamma / 2} \int_{|x-c| \geq \varepsilon}\left(|x-c|+n^{-1}\right)^{-p} d(x, n)^{p} u(x)^{p} w(x) d x \\
& \leq C n^{p \gamma / 2} \int_{-1}^{1} d(x, n)^{p} u(x)^{p} w(x) d x .
\end{aligned}
$$

It is easy to deduce from (3) that this last integral is bounded by a constant which does not depend on n, so

$$
\begin{equation*}
\int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p u(x)^{p} w(x) d x \leq C n^{p \gamma / 2} . . . ~} \tag{II}
\end{equation*}
$$

Let us take now the second term; since for $|x-c|<\varepsilon$ there exists a constant C such that $\forall n d(x, n) \leq C\left(|x-c|+n^{-1}\right)^{-\gamma / 2}, u(x) \leq C|x-c|^{9}$ and $w(x) \leq$ $C|x-c|^{\gamma}$, we have

$$
\begin{aligned}
& \int_{|x-c|<\epsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \\
& \leq C n^{p \gamma / 2} \int_{|x-c|<\varepsilon}\left(|x-c|+n^{-1}\right)^{-p} d(x, n)^{p} u(x)^{p} w(x) d x \\
& \leq C n^{p \gamma / 2} \int_{|x-c|<\varepsilon}\left(|x-c|+n^{-1}\right)^{-p(1+\gamma / 2)}|x-c|^{g p+\gamma} d x \\
& \leq C n^{p \gamma / 2} \int_{0}^{1}\left(y+n^{-1}\right)^{-p(1+\gamma / 2)} y^{g p+\gamma} d y \\
& =C n^{p \gamma / 2+p(1+\gamma / 2)-g p-\gamma-1} \int_{0}^{1}(n y+1)^{-p(1+\gamma / 2)}(n y)^{g p+\gamma} n d y \\
& \quad=C n^{p \gamma / 2+p(1+\gamma / 2)-g p-\gamma-1} \int_{0}^{n}(r+1)^{-p(1+\gamma / 2)} r^{g p+\gamma} d r .
\end{aligned}
$$

Taking into account that $p(1+\gamma / 2)-g p-\gamma-1=p((\gamma+1)(1 / 2-1 / p)-g+1 / 2]$ and there exist some constants C_{1} and C_{2} such that $C_{1} \leq r+1 \leq C_{2}$ on $[0,1]$ and $C_{1} r \leq r+1 \leq C_{2} r$ on $[1, n]$, we finally get the inequality

$$
\begin{gather*}
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{0}^{1} r^{g p+\gamma} d r \tag{12}\\
\quad+C n^{p \gamma / 2+p \mid(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r
\end{gather*}
$$

Since (3) implies $g p+\gamma>-1$, the first term is bounded by

$$
\begin{equation*}
C n^{p \gamma / 2+p l(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{0}^{1} r^{g p+\gamma} d r \leq C n^{p \gamma / 2+p((\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \tag{13}
\end{equation*}
$$

For the second term, let us consider separately the three cases in the statement.
a) If $g<(\gamma+1)(1 / 2-1 / p)+1 / 2$, then $-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1<-1$. Thus

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r \leq C
$$

In this case, (12) and (13) imply:

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2+p((\gamma+1)(1 / 2-1 / p)-g+1 / 2]}
$$

Since $p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]>0$, from this inequality and (11) we obtain

$$
\begin{aligned}
&\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2+p l(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \\
&=C n^{p[(\gamma+1)(1-1 / p)-g]}=C n^{p[(\gamma+1) / q-g]}
\end{aligned}
$$

as we had to prove.
b) If $(\gamma+1)(1 / 2-1 / p)+1 / 2<g$, then $-p[(g+1)(1 / 2-1 / p)-g+1 / 2]-1>-1$. Therefore

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2\}-1} d r \leq C n^{-p l(\gamma+1)(1 / 2-1 / p)-g+1 / 2]}
$$

By (12) and (13), it follows

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p_{u}} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2}
$$

and

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2}
$$

c) If $g=(\gamma+1)(1 / 2-1 / p)+1 / 2$

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r=\log n
$$

hence,

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p x / 2} \log n
$$

and

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2} \log n
$$

This concludes the proof of the proposition.
Corollary 5. Let $1<p<\infty, 1 / p+1 / q=1$ and suppose the inequality (2) holds. Let $-1<c<1$ and γ and G be the exponents of $|x-c|$ in w and v, respectively. Then, there exists a positive constant C such that $\forall n \in \mathbb{N}$

$$
\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)} \leq \begin{cases}C n^{\gamma / 2} & \text { if } G<(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{\gamma / 2}(\log n)^{1 / q} & \text { if } G=(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{(\gamma+1) / p+G} & \text { if }(\gamma+1)(1 / 2-1 / p)+1 / 2<G\end{cases}
$$

Proof: Just apply proposition 4 to the weight v^{-1} and keep in mind the equality $1 / 2-1 / p=1 / q-1 / 2$.

The following result is just what we need to extend theorem 1 to the general case $\gamma_{i}>-1$.

Corollary 6. Let $1<p<\infty, 1 / p+1 / q=1$. Suppose the inequalities (2), (3) and (4) hold. Let $-1<c<1$. Then, there exists a positive constant C such that $\forall n \geq 0$.

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)} \leq C K_{n}(c, c)
$$

Proof: It is a simple consequence of proposition 4, corollary 5 and the estimate (9). The only thing we must do is to consider each case in these results separately.

Note. Although it will not be used in what follows, corollary 6 also holds when $c= \pm 1$. The proof is similar: starting from other expressions for $K_{n}(x, \pm 1)$, analogous results to proposition 4 and corollary 5 can be obtained, and then corollary 6 follows.

We are now ready to prove our main result:
Proof of theorem 2: a) Let us assume first that the inequalities (2), (3) and (4) hold. We prove that the operators S_{n} are uniformly bounded by induction on the number of negative exponents γ_{i}. If $\gamma_{i} \geq 0 \forall i$, the result is true, as
we saw before (theorem 1). Now, suppose there exist k negative exponents γ_{i}, with $k>0$, and the result is true for $k-1$. Let $c \in(-1,1)$ be a point with a negative exponent γ. Let us remember the formula (5):

$$
K_{n}(x, y)=(x-c)(y-c) K_{n-1}^{c}(x, y)+\frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)}
$$

We define the operators:

$$
\begin{aligned}
& T_{n} f(x)=\int_{-1}^{1} \frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)} f(y) w(y) d y \\
& R_{n} f(x)=\int_{-1}^{1}(x-c)(y-c) K_{n-1}^{c}(x, y) f(y) w(y) d y
\end{aligned}
$$

Then, $S_{n}=T_{n}+R_{n}$. We are going to study firstly the operators T_{n} :

$$
T_{n} f(x)=\frac{K_{n}(x, c)}{K_{n}(c, c)} \int_{-1}^{1} K_{n}(c, y) f(y) w(y) d y
$$

thus

$$
\begin{aligned}
\left\|T_{n} f\right\|_{L^{p}\left(u^{p} w\right)} & \leq \frac{\int_{-1}^{1}\left|K_{n}(c, y)\right| v(y)^{-1}|f(y)| v(y) w(y) d y}{K_{n}(c, c)}\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)} \\
& \leq \frac{\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c) v(x)^{-1}\right\|_{L^{q}(w)}\|f v\|_{L^{p}(w)}}{K_{n}(c, c)} \\
& =\frac{\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)}}{K_{n}(c, c)}\|f\|_{L^{p}\left(v^{p} w\right)}
\end{aligned}
$$

From corollary 6 it follows

$$
\left\|T_{n} f\right\|_{L^{p}\left(u^{\triangleright} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{\triangleright} d_{\mu}\right)} \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N} .
$$

So, we only need to prove the same bound for the operators R_{n}. But, if we denote by S_{n}^{c} the partial sums of the Fourier series with respect to the measure $(x-c)^{2} w(x) d x$, it turns out that

$$
R_{n} f(x)=(x-c) \int_{-1}^{1}(y-c) K_{n-1}^{c}(x, y) f(y) w(y) d y=(x-c) S_{n-1}^{c}\left(\frac{f(y)}{y-c}, x\right)
$$

whence

$$
\begin{aligned}
& \left\|R_{n} f\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)}, \forall f \in L^{p}\left(v^{p} w\right), \forall n \in \mathbb{N} \\
& \Leftrightarrow\left\|(x-c) S_{n-1}^{c}\left(\frac{f(y)}{y-c}, x\right)\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)} \forall f \in L^{p}\left(v^{p} w\right), \forall n \in \mathbb{N} \\
& \Leftrightarrow\left\|(x-c) S_{n-1}^{c} g(x)\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|(x-c) g\|_{L^{p}\left(v^{p} w\right)} \forall g \in L^{p}\left(|x-c|^{p} v^{p} w\right), \forall n \in \mathbb{N} \\
& \Leftrightarrow\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(\left.|x-c|\right|^{p} u^{p} w\right)} \leq C\left\|_{g}\right\|_{L^{p}\left(\left.|x-c|\right|^{p} v^{p} w\right)} \forall g \in L^{p}\left(|x-c|^{p} v^{p} w\right), \forall n \in \mathbb{N} \\
& \Leftrightarrow\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(\bar{u}^{p}(x-c)^{2} w\right)} \leq C\|g\|_{L^{p}\left(\bar{v}^{p}(x-c)^{2} w\right)} \forall g \in L^{p}\left(\bar{v}^{p}(x-c)^{2} w\right), \forall n \in \mathbb{N},
\end{aligned}
$$

where $\tilde{u}(x)=|x-c|^{1-2 / p} u(x)$ and $\tilde{v}(x)=|x-c|^{1-2 / p} v(x)$.
Therefore, we must prove the boundedness of the partial sums S_{n}^{c} with the pair of weights (\tilde{u}, \tilde{v}). But the Fourier series we are considering now corresponds to the Jacobi generalized weight $(x-c)^{2} w(x)$, which has only $k-1$ negative exponents γ_{i}, since on the point c the exponent is $\gamma+2>1$. By hypothesis, the theorem holds in this case and we only have to see that the conditions in the statement hold for the weights $(x-c)^{2} w(x),|x-c|^{1-2 / p} u(x)$ and $|x-c|^{1-2 / p_{v}}(x)$.

Except for the point c, these weights have the same exponents as w, u and v. Thus, those conditions are the same and therefore they are satisfied. At the point c, the exponents are, respectively: $\gamma+2, g+1-2 / p, G+1-2 / p$.

So, we have to check the inequalities

$$
\begin{aligned}
& \left(G+1-\frac{2}{p}\right)+(\gamma+2+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{2}, \frac{\gamma+2+1}{2}\right\}, \\
& \left(g+1-\frac{2}{p}\right)+(\gamma+2+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{2}, \frac{\gamma+2+1}{2}\right\}
\end{aligned}
$$

and

$$
G+1-\frac{2}{p} \leq g+1-\frac{2}{p}
$$

It is clear, from our hypothesis, that they are satisfied. Consequently, we have $\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(\bar{u}^{p}(x-c)^{2} w\right)} \leq C\|g\|_{L^{p}\left(\hat{v}^{p}(x-c)^{2} w\right)} \forall g \in L^{p}\left(\tilde{v}^{p}(x-c)^{2} w\right), \quad \forall n \in \mathbb{N}$.

Thus,

$$
\left\|R_{n} f\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)} \forall f \in L^{p}\left(v^{p} w\right), \quad \forall n \in \mathbb{N}
$$

and

$$
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} \mu\right)} \forall f \in L^{p}\left(v^{p} \mu\right), \quad \forall n \in \mathbb{N} .
$$

Therefore, the result is true for k negative exponents γ_{i}. By induction, it is true in general and the first part of the theorem is proved.
b) Now, assume that the operators S_{n} are uniformly bounded. Let us prove that (2), (3) and (4) are satisfied.

From a result of Máté, Nevai and Totik ([3, theorem 1]), it follows

$$
\begin{aligned}
u & \in L^{p}(d \mu) \\
v^{-1} & \in L^{q}(d \mu) \\
w(x)^{-1 / 2}\left(1-x^{2}\right)^{-1 / 4} u(x) & \in L^{p}(w(x) d x) \\
w(x)^{-1 / 2}\left(1-x^{2}\right)^{-1 / 4} v(x)^{-1} & \in L^{q}(w(x) d x)
\end{aligned}
$$

These conditions are equivalent to (2) and (3). Thus, we only need to prove (4), that is:
$\exists C>0$ such that $u \leq C v \mu-a . e$.

In fact, we are going to show that the same C of the hypothesis works. First of all, let us note that from the hypothesis it follows

$$
\begin{equation*}
\|R\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|R\|_{L^{p}\left(v^{P} d \mu\right)} \tag{14}
\end{equation*}
$$

for every polynomial R, since $S_{n} R=R$ if n is big enough.
It is clear that there exists a polynomial Q such that both $|Q|^{p} u^{p}$ and $|Q|^{p} v^{p}$ are μ-integrable. Let us denote $u^{\prime}=|Q|^{p} u^{p}$ and $v^{\prime}=|Q|^{p} v^{p}$. Then, for every $f \in L^{p}\left(u^{\prime} d \mu\right) \cap L^{p}\left(v^{\prime} d \mu\right)$ there exists a sequence of polynomials R_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f-R_{n}\right|^{p}\left(u^{\prime}+v^{\prime}\right) d \mu=0
$$

From this and (14) we obtain

$$
\begin{aligned}
& \int_{-1}^{1}|f|^{p} u^{\prime} d \mu \\
& \quad=\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|R_{n} Q\right|^{p} u^{p} d \mu \leq C^{p} \lim _{n \rightarrow \infty} \int_{-1}^{1}\left|R_{n} Q\right|^{p} v^{p} d \mu=C^{p} \int_{-1}^{1}|f|^{p} v^{\prime} d \mu
\end{aligned}
$$

Taking now $E=\{x \in\{-1,1] ; u(x)>C v(x)\}$ and f the characteristic function on E, we deduce $\mu(E)=0$.

References

1. V.M. BADKov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR Sb. 24 (1974), 223-256.
2. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
3. A. Máté, P. Nevai and V. Totik, Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory 46 (1986), 314-322.
4. A. Máté, P. Nevai and V. Totik, Extensions of Szegő's Theory of Orthogonal Polynomials. II, Constr. Approx. 3 (1987), 51-72.
5. B. Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306-310.
6. C.J. Neugebauer, Inserting A_{p} weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
7. P. Nevai, "Orthogonal Polynomials," Memoirs of the Amer. Math. Soc. 18, n. 213, Providence, RI, U.S.A., 1979.
8. H. Pollard, The mean convergence of orthogonal series. II, Trans. Amer. Math. Soc. 63 (1948), 355-367.
9. E.A. Ranmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR. Sb. 32 (1977), 199-213.
10. J.L. Varona, "Convergencia en L^{p} con pesos de la setie de Fourier respecto de algunos sistemas ortogonales," Doctoral dissertation, Sem. Mat. García de Galdeano, sec.2, n. 22, Zaragoza, Spain,, 1989.

José J. Guadalupe: Departamento de Matemáticas
Universidad de Zaragoza 50009 Zaragoza SPAIN
Mario Pérez: Departamento de Matemáticas
Universidad de Zaragoza
50009 Zaragoza
SPAIN
Francisco J. Ruiz: Departamento de Matemáticas
Universidad de Zaragoza
50009 Zaragoza
SPAIN
Juan L.Varona: Departamento de Maternática Aplicada
Colegio Universitario de La Rioja 26001 Logroño SPAIN

Primera versió rebuda el 20 de Febret de 1990, darrera versió rebuda el 30 de Maig de 1990

