WEIGHTED L^{p}-BOUNDEDNESS OF FOURIER SERIES RELATIVE TO GENERALIZED JACOBI WEIGHTS.

José J. Guadalupe ${ }^{1}$, Mario Pérez ${ }^{1}$, Francisco J. Ruiz ${ }^{1}$ and Juan L. Varona ${ }^{2}$

Abstract

Let w be a generalized Jacobi weight on the interval $[-1,1]$ and, for each function f, let $S_{n} f$ denote the n-th partial sum of the Fourier series of f with respect to the orthogonal polynomials relative to w. We prove a result about uniform boundedness of the operators S_{n} in some weighted L^{p} spaces. The study of the norms of the kernels K_{n} associated with the operators S_{n} allows us to obtain a relation between the Fourier series relative to different generalized Jacobi weights.

Let w be a generalized Jacobi weight, that is,

$$
w(x)=h(x)(1-x)^{\alpha}(1+x)^{\beta} \prod_{i=1}^{N}\left|x-t_{i}\right|^{\gamma_{i}}, x \in[-1,1]
$$

where
a) $\alpha, \beta, \gamma_{i}>-1, t_{i} \in(-1,1), t_{i} \neq t_{j} \forall i \neq j$;
b) h is a positive, continuous function on $[-1,1]$ and $w(h, \delta) \delta^{-1} \in L^{1}(0,1), w(h, \delta)$ being the modulus of continuity of h.

Let $d \mu=w(x) d x$ on $[-1,1]$ and let $S_{n}(n \geq 0)$ be the n-th partial sum of the Fourier series in the orthonormal polynomials with respect to $d \mu$. The study of the boundedness

$$
\begin{equation*}
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} d \mu\right)}, \tag{1}
\end{equation*}
$$

where

$$
u(x)=(1-x)^{a}(1+x)^{b} \prod_{i=1}^{N}\left|x-t_{i}\right|^{g_{i}}, \quad a, b, g_{i} \in \mathbb{R}
$$

$$
v(x)=(1-x)^{A}(1+x)^{B} \prod_{i=1}^{N}\left|x-t_{i}\right|^{G_{i}}, \quad A, B, G_{i} \in \mathbb{R}
$$

was done by Badkov ([1]) in the case $u=v$ by means of a direct estimation of the kernels $K_{n}(x, y)$ associated with the polynomials orthogonal with respect to $d \mu$. Later, one of us ([10]) considered the same problem, with u and v not necessarily equal; his method consists of an appropriate use of the theory of A_{p} weights. He found conditions for (1) which generalized those obtained for $u=v$ by Badkov. However, this result, which we state below, follows only in the case $\gamma_{i} \geq 0, i=1, \ldots, N$.

[^0]Theorem 1. Let $\gamma_{i} \geq 0, i=1, \ldots, N$ and $1<p<\infty$. If the inequalities

$$
\begin{align*}
& \left\{\begin{array}{l}
A+(\alpha+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{4}, \frac{\alpha+1}{2}\right\} \\
B+(\beta+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{4}, \frac{\beta+1}{2}\right\} \\
G_{i}+\left(\gamma_{i}+1\right)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{2}, \frac{\gamma_{i}+1}{2}\right\} \quad(i=1, \ldots, N)
\end{array}\right. \tag{2}\\
& \left\{\begin{array}{l}
a+(\alpha+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{4}, \frac{\alpha+1}{2}\right\} \\
b+(\beta+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{4}, \frac{\beta+1}{2}\right\} \\
g_{i}+\left(\gamma_{i}+1\right)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{2}, \frac{\gamma_{i}+1}{2}\right\} \quad(i=1, \ldots, N)
\end{array}\right. \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
A \leq a, \quad B \leq b, \quad G_{i} \leq g_{i} \tag{4}
\end{equation*}
$$

hold, then
$\exists C>0$ such that $\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} d \mu\right)} \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N}$.
The objective of this paper is to show that the result remains true without the restriction $\gamma_{i} \geq 0$ and that conditions (2), (3) and (4) are also necessary for the uniform boundedness:

Theorem 2. Let $1<p<\infty$. Then, there exists $C>0$ such that

$$
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} d \mu\right)} \quad \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N},
$$

if and only if the inequalities (2), (3) and (4) are satisfied.
For the sake of completeness, we give a brief sketch of the proof of theorem 1 (see also [10]). By using Pollard's decomposition of the kernels $K_{n}(x, y)$ (see [8], [5]), the uniform boundedness of S_{n} can be reduced to that of the Hilbert transform with pairs of weights

$$
\left(\left|P_{n+1}(x)\right|^{p} u(x)^{p} w(x),\left|Q_{n}(x)\right|^{-p}\left(1-x^{2}\right)^{-p} v(x)^{p} w(x)^{1-p}\right)
$$

and

$$
\left(\left|Q_{n}(x)\right|^{p}\left(1-x^{2}\right)^{p} u(x)^{p} w(x),\left|P_{n+1}(x)\right|^{-p} v(x)^{p} w(x)^{1-p}\right),
$$

Q_{n} being the n-th orthonormal polynomial relative to the measure $\left(1-x^{2}\right) d \mu$. Using now Hunt-Muckenhoupt-Wheeden and Neugebauer results (see [2], [6]), together with some known estimates for generalized Jacobi polynomials (see (8) below), for the above uniform boundedness the following conditions turn out to be sufficient:

$$
\left(u_{n}^{\delta}, v_{n}^{\delta}\right) \in A_{p}((-1,1))
$$

and

$$
\left(\bar{u}_{n}^{\delta}, \bar{v}_{n}^{\delta}\right) \in A_{p}((-1,1))
$$

for some $\delta>1$, with A_{p} constants independent of n, where

$$
\begin{aligned}
u_{n}(x) & =(1-x)^{a p+\alpha}\left(1-x+n^{-2}\right)^{-p(2 \alpha+1) / 4} \\
& \times(1+x)^{b p+\beta}\left(1+x+n^{-2}\right)^{-p(2 \beta+1) / 4} \\
& \times \prod_{i=1}^{N}\left|x-t_{i}\right|^{g_{i} p+\gamma_{i}}\left(\left|x-t_{i}\right|+n^{-1}\right)^{-p \gamma_{i} / 2}, \\
v_{n}(x)= & (1-x)^{A p+\alpha(1-p)+p}\left(1-x+n^{-2}\right)^{p(2 \alpha+3) / 4} \\
\times & (1+x)^{B p+\beta(1-p)+p}\left(1+x+n^{-2}\right)^{p(2 \beta+3) / 4} \\
& \times \prod_{i=1}^{N}\left|x-t_{i}\right|^{G_{i} p+\gamma_{i}(1-p)}\left(\left|x-t_{i}\right|+n^{-1}\right)^{p \gamma_{i} / 2}
\end{aligned}
$$

and similar expressions for \bar{u}_{n} and \bar{v}_{n}.
These conditions are easy to check using the simpler result (see [10]):
Lemma 3. Let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers converging to 0 . Let $r, s, R, S \in$ \mathbb{R}. Then,

$$
\left(|x|^{r}\left(|x|+x_{n}\right)^{s},|x|^{R}\left(|x|+x_{n}\right)^{S}\right) \in A_{p}((-1,1))
$$

with a constant independent of n if and only if the following inequalities hold:

$$
\begin{array}{rrrl}
r>-1 ; & R<p-1 ; & R & R \\
r+s>-1 ; & R+S<p-1 ; & R+S & \leq r+s
\end{array}
$$

At least in the case $u=v$ (thus $g_{i}=G_{i}, \forall i$, inequality $R \leq r$ requires $\gamma_{i} \geq 0 \forall i$. But, with this assumption, theorem 1 follows.

Let us introduce now some notation: $\left\{P_{n}(x)\right\},\left\{k_{n}\right\}$ and $\left\{K_{n}(x, y)\right\}$ will be, respectively, the orthonormal polynomials, their leading coefficients and the kernels relatives to $d \mu$; if $c \in(-1,1),\left\{P_{n}^{c}(x)\right\},\left\{k_{n}^{c}\right\}$ and $\left\{K_{n}^{c}(x, y)\right\}$ will be the corresponding to $(x-c)^{2} d \mu$. Then, it is not difficult to establish $\forall n \in \mathbb{N}$ the relations

$$
\begin{gather*}
K_{n}(x, y)=(x-c)(y-c) K_{n-1}^{c}(x, y)+\frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)} \tag{5}\\
K_{n}(x, c)=\frac{k_{n}}{k_{n}^{c}} P_{n}(c) P_{n}^{c}(x)-\frac{k_{n-1}^{c}}{k_{n+1}} P_{n+1}(c) P_{n-1}^{c}(x) \tag{6}
\end{gather*}
$$

It can be also shown (see [4], theorems 10 and 11, and [9], pag. 212) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{k_{n}}{k_{n}^{c}}=\lim _{n \rightarrow \infty} \frac{k_{n-1}^{c}}{k_{n+1}}=\frac{1}{2} \tag{7}
\end{equation*}
$$

If we define

$$
d(x, n)=\left(1-x+n^{-2}\right)^{-(2 \alpha+1) / 4}\left(1+x+n^{-2}\right)^{-(2 \beta+1) / 4} \prod_{i=1}^{N}\left(\left|x-t_{i}\right|+n^{-1}\right)^{-\gamma_{i} / 2}
$$

it is known ([1]) that there exists a constant C such that $\forall x \in[-1,1], \forall n \in \mathbb{N}$

$$
\begin{equation*}
\left|P_{n}(x)\right| \leq C d(x, n) \tag{8}
\end{equation*}
$$

There are also some well-known estimates for the kernels, one of them being this ([7], pag. 4 and pag. 119, theorem 25): if $c \in(-1,1)$ and the factor $|x-c|$ occurs in w with an exponent γ, there exist some positive constants C_{1} and C_{2}, depending on c, such that $\forall n \in \mathbb{N}$

$$
\begin{equation*}
C_{1} n^{\gamma+1} \leq K_{n}(c, c) \leq C_{2} n^{\gamma+1} \tag{9}
\end{equation*}
$$

From now on, all constants will be denoted C, so by C we will mean a constant, possibly different in each occurrence. Using (6), (7) and (8) we obtain the following result:

Proposition 4. Let $1<p<\infty, 1 / p+1 / q=1$ and suppose the inequality (3) holds. Let $-1<c<1$ and let γ and g be the exponents of $|x-c|$ in w and u, respectively. Then, there exists a positive constant C such that $\forall n \geq 0$:

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)} \leq \begin{cases}C n^{(\gamma+1) / q-g} & \text { if } g<(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{\gamma / 2}(\log n)^{1 / p} & \text { if } g=(\gamma+1)(1 / 2-1 / p)+1 / 2 \\ C n^{\gamma / 2} & \text { if } \quad(\gamma+1)(1 / 2-1 / p)+1 / 2<g\end{cases}
$$

Proof. From (8) it follows that $\left|P_{n}(c)\right| \leq C n^{\gamma / 2}$. Since $\left\{P_{n}^{c}\right\}$ is the sequence associated with $(x-c)^{2} d \mu$, it also follows from (8) that

$$
\left|P_{n}^{c}(x)\right| \leq C\left(|x-c|+n^{-1}\right)^{-1} d(x, n)
$$

Now, from (6) and (7) we get:

$$
\begin{equation*}
\left|K_{n}(x, c)\right| \leq C n^{\gamma / 2}\left(|x-c|+n^{-1}\right)^{-1} d(x, n) \tag{10}
\end{equation*}
$$

Let us take $\varepsilon>0$ such that $\left|t_{i}-c\right|>\varepsilon$ for all $t_{i} \neq c$. We can write:

$$
\begin{gathered}
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \\
=\int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x+\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x
\end{gathered}
$$

Using (10), we obtain for the first term

$$
\begin{gathered}
\int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2} \int_{|x-c| \geq \varepsilon}\left(|x-c|+n^{-1}\right)^{-p} d(x, n)^{p} u(x)^{p} w(x) d x \\
\leq C n^{p \gamma / 2} \int_{-1}^{1} d(x, n)^{p} u(x)^{p} w(x) d x
\end{gathered}
$$

It is easy to deduce from (3) that this last integral is bounded by a constant which does not depend on n, so

$$
\begin{equation*}
\int_{|x-c| \geq \varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2} \tag{11}
\end{equation*}
$$

Let us take now the second term; since for $|x-c|<\varepsilon$ there exists a constant C such that $\forall n d(x, n) \leq C\left(|x-c|+n^{-1}\right)^{-\gamma / 2}, u(x) \leq C|x-c|^{g}$ and $w(x) \leq C|x-c|^{\gamma}$, we have

$$
\begin{gathered}
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2} \int_{|x-c|<\varepsilon}\left(|x-c|+n^{-1}\right)^{-p} d(x, n)^{p} u(x)^{p} w(x) d x \\
\leq C n^{p \gamma / 2} \int_{|x-c|<\varepsilon}\left(|x-c|+n^{-1}\right)^{-p(1+\gamma / 2)}|x-c|^{g p+\gamma} d x \\
\leq C n^{p \gamma / 2} \int_{0}^{1}\left(y+n^{-1}\right)^{-p(1+\gamma / 2)} y^{g p+\gamma} d y \\
=C n^{p \gamma / 2+p(1+\gamma / 2)-g p-\gamma-1} \int_{0}^{1}(n y+1)^{-p(1+\gamma / 2)}(n y)^{g p+\gamma} n d y \\
=C n^{p \gamma / 2+p(1+\gamma / 2)-g p-\gamma-1} \int_{0}^{n}(r+1)^{-p(1+\gamma / 2)} r^{g p+\gamma} d r .
\end{gathered}
$$

Taking into account that $p(1+\gamma / 2)-g p-\gamma-1=p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]$ and there exist some constants C_{1} and C_{2} such that $C_{1} \leq r+1 \leq C_{2}$ on $[0,1]$ and $C_{1} r \leq r+1 \leq C_{2} r$ on $[1, n]$, we finally get the inequality

$$
\begin{gather*}
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{0}^{1} r^{g p+\gamma} d r \tag{12}\\
\quad+C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r .
\end{gather*}
$$

Since (3) implies $g p+\gamma>-1$, the first term is bounded by

$$
\begin{equation*}
C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \int_{0}^{1} r^{g p+\gamma} d r \leq C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} . \tag{13}
\end{equation*}
$$

For the second term, let us consider separately the three cases in the statement.
a) If $g<(\gamma+1)(1 / 2-1 / p)+1 / 2$, then $-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1<-1$. Thus

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r \leq C .
$$

In this case, (12) and (13) imply:

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} .
$$

Since $p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]>0$, from this inequality and (11) we obtain

$$
\begin{gathered}
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2+p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} \\
=C n^{p[(\gamma+1)(1-1 / p)-g]}=C n^{p[(\gamma+1) / q-g]}
\end{gathered}
$$

as we had to prove.
b) If $(\gamma+1)(1 / 2-1 / p)+1 / 2<g$, then $-p[(g+1)(1 / 2-1 / p)-g+1 / 2]-1>-1$.

Therefore

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r \leq C n^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]} .
$$

By (12) and (13), it follows

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2}
$$

and

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2}
$$

c) If $g=(\gamma+1)(1 / 2-1 / p)+1 / 2$

$$
\int_{1}^{n} r^{-p[(\gamma+1)(1 / 2-1 / p)-g+1 / 2]-1} d r=\log n
$$

hence,

$$
\int_{|x-c|<\varepsilon}\left|K_{n}(x, c)\right|^{p} u(x)^{p} w(x) d x \leq C n^{p \gamma / 2} \log n
$$

and

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}^{p} \leq C n^{p \gamma / 2} \log n .
$$

This concludes the proof of the proposition.
Corollary 5. Let $1<p<\infty, 1 / p+1 / q=1$ and suppose the inequality (2) holds. Let $-1<c<1$ and γ and G be the exponents of $|x-c|$ in w and v, respectively. Then, there exists a positive constant C such that $\forall n \in \mathbb{N}$

$$
\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)} \leq\left\{\begin{array}{lll}
C n^{\gamma / 2} & \text { if } & G<(\gamma+1)(1 / 2-1 / p)+1 / 2 \\
C n^{\gamma / 2}(\log n)^{1 / q} & \text { if } & G=(\gamma+1)(1 / 2-1 / p)+1 / 2 \\
C n^{(\gamma+1) / p+G} & \text { if } & (\gamma+1)(1 / 2-1 / p)+1 / 2<G
\end{array}\right.
$$

Proof. Just apply proposition 4 to the weight v^{-1} and keep in mind the equality $1 / 2-1 / p=1 / q-1 / 2$.

The following result is just what we need to extend theorem 1 to the general case $\gamma_{i}>-1$.

Corollary 6. Let $1<p<\infty, 1 / p+1 / q=1$. Suppose the inequalities (2), (3) and (4) hold. Let $-1<c<1$. Then, there exists a positive constant C such that $\forall n \geq 0$:

$$
\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)} \leq C K_{n}(c, c) .
$$

Proof. It is a simple consequence of proposition 4, corollary 5 and the estimate (9). The only thing we must do is to consider each case in these results separately.

Note. Although it will not be used in what follows, corollary 6 also holds when $c= \pm 1$. The proof is similar: starting from other expressions for $K_{n}(x, \pm 1)$, analogous results to proposition 4 and corollary 5 can be obtained, and then corollary 6 follows.

We are now ready to prove our main result:
Proof of theorem 2. a) Let us assume first that the inequalities (2), (3) and (4) hold. We prove that the operators S_{n} are uniformly bounded by induction on the number of negative exponents γ_{i}. If $\gamma_{i} \geq 0 \forall i$, the result is true, as we saw before (theorem 1). Now, suppose there exist k negative exponents γ_{i}, with $k>0$, and the result is true for $k-1$. Let $c \in(-1,1)$ be a point with a negative exponent γ. Let us remember the formula (5):

$$
K_{n}(x, y)=(x-c)(y-c) K_{n-1}^{c}(x, y)+\frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)} .
$$

We define the operators:

$$
\begin{gathered}
T_{n} f(x)=\int_{-1}^{1} \frac{K_{n}(x, c) K_{n}(c, y)}{K_{n}(c, c)} f(y) w(y) d y \\
R_{n} f(x)=\int_{-1}^{1}(x-c)(y-c) K_{n-1}^{c}(x, y) f(y) w(y) d y
\end{gathered}
$$

Then, $S_{n}=T_{n}+R_{n}$. We are going to study firstly the operators T_{n} :

$$
T_{n} f(x)=\frac{K_{n}(x, c)}{K_{n}(c, c)} \int_{-1}^{1} K_{n}(c, y) f(y) w(y) d y
$$

thus

$$
\begin{gathered}
\left\|T_{n} f\right\|_{L^{p}\left(u^{p} w\right)} \leq \frac{\int_{-1}^{1}\left|K_{n}(c, y)\right| v(y)^{-1}|f(y)| v(y) w(y) d y}{K_{n}(c, c)}\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)} \\
\leq \frac{\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c) v(x)^{-1}\right\|_{L^{q}(w)}}{K_{n}(c, c)}\|f v\|_{L^{p}(w)} \\
=\frac{\left\|K_{n}(x, c)\right\|_{L^{p}\left(u^{p} w\right)}\left\|K_{n}(x, c)\right\|_{L^{q}\left(v^{-q} w\right)}}{K_{n}(c, c)}\|f\|_{L^{p}\left(v^{p} w\right)} .
\end{gathered}
$$

From corollary 6 it follows

$$
\left\|T_{n} f\right\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} d \mu\right)} \forall f \in L^{p}\left(v^{p} d \mu\right), \forall n \in \mathbb{N} .
$$

So, we only need to prove the same bound for the operators R_{n}. But, if we denote by S_{n}^{c} the partial sums of the Fourier series with respect to the measure $(x-c)^{2} w(x) d x$, it turns out that

$$
R_{n} f(x)=(x-c) \int_{-1}^{1}(y-c) K_{n-1}^{c}(x, y) f(y) w(y) d y=(x-c) S_{n-1}^{c}\left(\frac{f(y)}{y-c}, x\right)
$$

whence

$$
\begin{aligned}
& \left\|R_{n} f\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)} \forall f \in L^{p}\left(v^{p} w\right), \forall n \in \mathbb{N} \\
& \Longleftrightarrow\left\|(x-c) S_{n-1}^{c}\left(\frac{f(y)}{y-c}, x\right)\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)} \forall f \in L^{p}\left(v^{p} w\right), \forall n \in \mathbb{N} \\
& \Longleftrightarrow\left\|(x-c) S_{n-1}^{c} g(x)\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|(x-c) g\|_{L^{p}\left(v^{p} w\right)} \forall g \in L^{p}\left(|x-c|^{p} v^{p} w\right), \forall n \in \mathbb{N} \\
& \Longleftrightarrow\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(|x-c| p^{p} u^{p} w\right)} \leq C\|g\|_{L^{p}\left(|x-c|^{p} v^{p} w\right)} \forall g \in L^{p}\left(|x-c|^{p} v^{p} w\right), \forall n \in \mathbb{N} \\
& \Longleftrightarrow\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(\tilde{u}^{p}(x-c)^{2} w\right)} \leq C\|g\|_{L^{p}\left(\tilde{v}^{p}(x-c)^{2} w\right)} \forall g \in L^{p}\left(\tilde{v}^{p}(x-c)^{2} w\right), \forall n \in \mathbb{N},
\end{aligned}
$$

where $\tilde{u}(x)=|x-c|^{1-2 / p} u(x)$ and $\tilde{v}(x)=|x-c|^{1-2 / p} v(x)$.
Therefore, we must prove the boundedness of the partial sums S_{n}^{c} with the pair of weights (\tilde{u}, \tilde{v}). But the Fourier series we are considering now corresponds to the Jacobi generalized weight $(x-c)^{2} w(x)$, which has only $k-1$ negative exponents γ_{i}, since on the point c the exponent is $\gamma+2>1$. By hypothesis, the theorem holds in this case and we only have to see that the conditions in the statement hold for the weights $(x-c)^{2} w(x)$, $|x-c|^{1-2 / p} u(x)$ and $|x-c|^{1-2 / p} v(x)$.

Except for the point c, these weights have the same exponents as w, u and v. Thus, those conditions are the same and therefore they are satisfied. At the point c, the exponents are, respectively: $\gamma+2, g+1-2 / p, G+1-2 / p$.

So, we have to check the inequalities

$$
\begin{aligned}
& \left(G+1-\frac{2}{p}\right)+(\gamma+2+1)\left(\frac{1}{p}-\frac{1}{2}\right)<\min \left\{\frac{1}{2}, \frac{\gamma+2+1}{2}\right\}, \\
& \left(g+1-\frac{2}{p}\right)+(\gamma+2+1)\left(\frac{1}{p}-\frac{1}{2}\right)>-\min \left\{\frac{1}{2}, \frac{\gamma+2+1}{2}\right\}
\end{aligned}
$$

and

$$
G+1-\frac{2}{p} \leq g+1-\frac{2}{p} .
$$

It is clear, from our hypothesis, that they are satisfied. Consequently, we have

$$
\left\|S_{n-1}^{c} g(x)\right\|_{L^{p}\left(\tilde{u}^{p}(x-c)^{2} w\right)} \leq C\|g\|_{L^{p}\left(\tilde{v}^{p}(x-c)^{2} w\right)} \forall g \in L^{p}\left(\tilde{v}^{p}(x-c)^{2} w\right), \quad \forall n \in \mathbb{N} .
$$

Thus,

$$
\left\|R_{n} f\right\|_{L^{p}\left(u^{p} w\right)} \leq C\|f\|_{L^{p}\left(v^{p} w\right)} \forall f \in L^{p}\left(v^{p} w\right), \quad \forall n \in \mathbb{N}
$$

and

$$
\left\|S_{n} f\right\|_{L^{p}\left(u^{p} \mu\right)} \leq C\|f\|_{L^{p}\left(v^{p} \mu\right)} \forall f \in L^{p}\left(v^{p} \mu\right), \quad \forall n \in \mathbb{N} .
$$

Therefore, the result is true for k negative exponents γ_{i}. By induction, it is true in general and the first part of the theorem is proved.
b) Now, assume that the operators S_{n} are uniformly bounded. Let us prove that (2), (3) and (4) are satisfied.

From a result of Máté, Nevai and Totik ([3], theorem 1), it follows

$$
\begin{aligned}
u & \in L^{p}(d \mu) ; \\
v^{-1} & \in L^{q}(d \mu) ; \\
w(x)^{-1 / 2}\left(1-x^{2}\right)^{-1 / 4} u(x) & \in L^{p}(w(x) d x) ; \\
w(x)^{-1 / 2}\left(1-x^{2}\right)^{-1 / 4} v(x)^{-1} & \in L^{q}(w(x) d x) .
\end{aligned}
$$

These conditions are equivalent to (2) and (3). Thus, we only need to prove (4), that is:

$$
\exists C>0 \text { such that } u \leq C v \quad \mu-a . e .
$$

In fact, we are going to show that the same C of the hypothesis works. First of all, let us note that from the hypothesis it follows

$$
\begin{equation*}
\|R\|_{L^{p}\left(u^{p} d \mu\right)} \leq C\|R\|_{L^{p}\left(v^{p} d \mu\right)} \tag{14}
\end{equation*}
$$

for every polynomial R, since $S_{n} R=R$ if n is big enough.
It is clear that there exists a polynomial Q such that both $|Q|^{p} u^{p}$ and $|Q|^{p} v^{p}$ are μ-integrable. Let us denote $u^{\prime}=|Q|^{p} u^{p}$ and $v^{\prime}=|Q|^{p} v^{p}$. Then, for every $f \in L^{p}\left(u^{\prime} d \mu\right) \cap$ $L^{p}\left(v^{\prime} d \mu\right)$ there exists a sequence of polynomials R_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f-R_{n}\right|^{p}\left(u^{\prime}+v^{\prime}\right) d \mu=0
$$

From this and (14) we obtain

$$
\int_{-1}^{1}|f|^{p} u^{\prime} d \mu=\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|R_{n} Q\right|^{p} u^{p} d \mu \leq C^{p} \lim _{n \rightarrow \infty} \int_{-1}^{1}\left|R_{n} Q\right|^{p} v^{p} d \mu=C^{p} \int_{-1}^{1}|f|^{p} v^{\prime} d \mu .
$$

Taking now $E=\{x \in[-1,1] ; u(x)>C v(x)\}$ and f the characteristic function on E, we deduce $\mu(E)=0$.

REFERENCES

[1] V. M. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR Sb. 24 (1974), 223-256.
[2] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
[3] A. Máté, P. Nevai and V. Totik, Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory 46 (1986), 314-322.
[4] A. Máté, P. Nevai and V. Totik, Extensions of Szegő's Theory of Orthogonal Polynomials. II, Constr. Approx. 3 (1987), 51-72.
[5] B. Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306-310.
[6] C. J. Neugebauer, Inserting A_{p} weights, Proc. Amer. Math. Soc. 87 (1983), 644-648.
[7] P. Nevai, "Orthogonal Polynomials", Memoirs of the Amer. Math. Soc., vol. 18, n. 213, Providence, RI, U.S.A., 1979.
[8] H. Pollard, The mean convergence of orthogonal series. II, Trans. Amer. Math. Soc. 63 (1948), 355-367.
[9] E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR. Sb. 32 (1977), 199-213.
[10] J. L. Varona, "Convergencia en L^{p} con pesos de la serie de Fourier respecto de algunos sistemas ortogonales", Doctoral dissertation, Sem. Mat. García de Galdeano, sec. 2, n. 22, Zaragoza, Spain, 1989.

[^0]: 1 Dpto. de Matemáticas. Universidad de Zaragoza. 50009 Zaragoza. Spain.
 2 Dpto. de Matemática Aplicada. Colegio Universitario de La Rioja. 26001 Logroño. Spain.
 A.M.S. (1985) Subject Classification: 42C10.

 AN UPDATED VERSION OF THIS MANUSCRIPT WERE PUBLISHED AS: Weighted L^{p}-boundedness of Fourier series with respect to generalized Jacobi weights, Publicacions Matemàtiques 35 (1991), 449-459.

