Convergencia en Lp con pesos de la Serie de Fourier respecto de algunos sistemas ortogonales

  1. Varona Malumbres, Juan Luis
Dirigida por:
  1. José Javier Guadalupe Hernández Director

Universidad de defensa: Universidad de Cantabria

Año de defensa: 1988

Tribunal:
  1. José Manuel Bayod Bayod Presidente/a
  2. Francisco José Ruiz Blasco Secretario
  3. José Manuel Carreas Dobato Vocal
  4. Miguel Lobo Hidalgo Vocal
  5. Francisco Marcellán Español Vocal

Tipo: Tesis

Repositorio institucional: lock_openAcceso abierto Postprint lock_openAcceso abierto Editor

Resumen

Convergence of the fourier series with respect to several orthogonal systems abstract. Given an orthogonal complete system with respect to a measure µ on an interval, we approach the convergence in weighted Lp spaces of the corresponding Fourier series. The orthogonal systems we analyze are generalized Jacobi, generalized Hermite, several systems of orthogonal polynomials with respect to weights with Dirac's deltas and Bessel and Dini's systems. In this study we use good estimates of the orthonormal functions and results on Ap-theory in order to solve the boundedness of the Hilbert transform with one or two weights.