Convergencia en Lp con pesos de la Serie de Fourier respecto de algunos sistemas ortogonales

  1. Varona Malumbres, Juan Luis
Dirigida per:
  1. José Javier Guadalupe Hernández Director

Universitat de defensa: Universidad de Cantabria

Any de defensa: 1988

Tribunal:
  1. José Manuel Bayod Bayod President/a
  2. Francisco José Ruiz Blasco Secretari
  3. José Manuel Carreas Dobato Vocal
  4. Miguel Lobo Hidalgo Vocal
  5. Francisco Marcellán Español Vocal

Tipus: Tesi

Repositori institucional: lock_openAccés obert Postprint lock_openAccés obert Editor

Resum

Convergence of the fourier series with respect to several orthogonal systems abstract. Given an orthogonal complete system with respect to a measure µ on an interval, we approach the convergence in weighted Lp spaces of the corresponding Fourier series. The orthogonal systems we analyze are generalized Jacobi, generalized Hermite, several systems of orthogonal polynomials with respect to weights with Dirac's deltas and Bessel and Dini's systems. In this study we use good estimates of the orthonormal functions and results on Ap-theory in order to solve the boundedness of the Hilbert transform with one or two weights.