Convergencia en Lp con pesos de la Serie de Fourier respecto de algunos sistemas ortogonales

  1. Varona Malumbres, Juan Luis
Zuzendaria:
  1. José Javier Guadalupe Hernández Zuzendaria

Defentsa unibertsitatea: Universidad de Cantabria

Defentsa urtea: 1988

Epaimahaia:
  1. José Manuel Bayod Bayod Presidentea
  2. Francisco José Ruiz Blasco Idazkaria
  3. José Manuel Carreas Dobato Kidea
  4. Miguel Lobo Hidalgo Kidea
  5. Francisco Marcellán Español Kidea

Mota: Tesia

Gordailu instituzionala: lock_openSarbide irekia Postprint lock_openSarbide irekia Editor

Laburpena

Convergence of the fourier series with respect to several orthogonal systems abstract. Given an orthogonal complete system with respect to a measure µ on an interval, we approach the convergence in weighted Lp spaces of the corresponding Fourier series. The orthogonal systems we analyze are generalized Jacobi, generalized Hermite, several systems of orthogonal polynomials with respect to weights with Dirac's deltas and Bessel and Dini's systems. In this study we use good estimates of the orthonormal functions and results on Ap-theory in order to solve the boundedness of the Hilbert transform with one or two weights.