Some Conjectures on Wronskian and Casorati Determinants of Orthogonal Polynomials

  1. Durán, A.J. 1
  2. Pérez, M. 2
  3. Varona, J.L. 3
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  2. 2 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Experimental mathematics

ISSN: 1058-6458

Año de publicación: 2015

Volumen: 24

Número: 1

Páginas: 123-132

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1080/10586458.2014.958786 SCOPUS: 2-s2.0-84961291614 WoS: WOS:000349389100011 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Experimental mathematics

Repositorio institucional: lock_openAcceso abierto Postprint

Resumen

In this paper, we conjecture some regularity properties for the zeros of Wronskian and Casorati determinants whose entries are orthogonal polynomials. These determinants are formed by choosing orthogonal polynomials whose degrees run on a finite set of nonnegative integers. The case in which such a set is formed by consecutive integers was studied by Karlin and Szegö