Two Dynamic Remarks on the Chebyshev–Halley Family of Iterative Methods for Solving Nonlinear Equations
-
1
Universidad de La Rioja
info
ISSN: 2075-1680
Argitalpen urtea: 2023
Alea: 12
Zenbakia: 12
Orrialdeak: 1114
Mota: Artikulua
beta Ver similares en nube de resultadosBeste argitalpen batzuk: Axioms
Laburpena
The aim of this paper is to delve into the dynamic study of the well-known Chebyshev–Halley family of iterative methods for solving nonlinear equations. Our objectives are twofold: On the one hand, we are interested in characterizing the existence of extraneous attracting fixed points when the methods in the family are applied to polynomial equations. On the other hand, we are also interested in studying the free critical points of the methods in the family, as a previous step to determine the existence of attracting cycles. In both cases, we want to identify situations where the methods in the family have bad behavior from the root-finding point of view. Finally, and joining these two studies, we look for polynomials for which there are methods in the family where these two situations happen simultaneously. The rational map obtained by applying a method in the Chebyshev–Halley family to a polynomial has both super-attracting extraneous fixed points and super-attracting cycles different from the roots of the polynomial.
Erreferentzia bibliografikoak
- Allgower, (1981), Numerical Solution of Nonlinear Equations: Proceedings, Bremen 1980, Volume 878, pp. 427
- Argyros, I.K., and Szidarovszky, F. (1993). The Theory and Applications of Iteration Methods, CRC Press.
- Argyros, (1994), Pure Math. Appl., 5, pp. 59
- (1997), Bull. Austral. Math. Soc., 55, pp. 113, 10.1017/S0004972700030586
- Salanova, (1993), Int. J. Comput. Math., 47, pp. 59, 10.1080/00207169308804162
- Ivanov, S.I. (2022). Unified Convergence Analysis of Chebyshev-Halley Methods for Multiple Polynomial Zeros. Mathematics, 10.
- Osada, (2008), J. Comput. Appl. Math., 216, pp. 585, 10.1016/j.cam.2007.06.020
- Dubeau, (2013), Int. J. Pure Appl. Math., 85, pp. 965, 10.12732/ijpam.v85i5.14
- Dubeau, (2013), Int. J. Pure Appl. Math., 85, pp. 1051
- Salanova, (2001), Nonlinear Anal., 47, pp. 2875, 10.1016/S0362-546X(01)00408-4
- Cordero, (2017), J. Comput. Appl. Math., 318, pp. 189, 10.1016/j.cam.2016.10.025
- Cordero, (2013), Appl. Math. Comput., 2019, pp. 8568, 10.1016/j.amc.2013.02.042
- Cordero, (2013), Abstr. Appl. Anal., 2013, pp. 536910, 10.1155/2013/536910
- Cordero, (2013), Int. J. Comput. Math., 90, pp. 2061, 10.1080/00207160.2012.745518
- Campos, (2020), Commun. Nonlinear Sci. Numer. Simulat., 82, pp. 508, 10.1016/j.cnsns.2019.105026
- Campos, (2018), Commun. Nonlinear Sci. Numer. Simulat., 56, pp. 508, 10.1016/j.cnsns.2017.08.024
- Varona, (2011), AIP Conf. Proc., 1389, pp. 1061
- Babajee, (2016), J. Comput. App. Math., 291, pp. 358, 10.1016/j.cam.2014.09.020
- Varona, (2020), Qual. Theory Dyn. Syst., 19, pp. 54, 10.1007/s12346-020-00390-5
- Roberts, (2004), Int. J. Bifurc. Chaos Appl. Sci. Eng., 14, pp. 3459, 10.1142/S0218127404011399
- Nayak, (2022), Nonlinear Dyn., 110, pp. 803, 10.1007/s11071-022-07648-4
- Beardon, A.F. (1991). Iteration of Rational Functions, Springer.
- Traub, J.F. (1964). Iterative Methods for the Solution of Equations, Prentice-Hall.
- Kneisl, (2001), Chaos, 11, pp. 359, 10.1063/1.1368137
- Vrscay, (1988), Numer. Math., 52, pp. 1, 10.1007/BF01401018
- (2015), SeMA J., 71, pp. 57, 10.1007/s40324-015-0046-9
- Basto, (2006), Appl. Math. Comput., 173, pp. 468, 10.1016/j.amc.2005.04.045
- (2001), Appl. Math. Comput., 117, pp. 223, 10.1016/S0096-3003(99)00175-7
- Temimi, (2019), Appl. Numer. Math., 139, pp. 62, 10.1016/j.apnum.2019.01.003