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Abstract: The aim of this paper is to delve into the dynamic study of the well-known Chebyshev–
Halley family of iterative methods for solving nonlinear equations. Our objectives are twofold: On
the one hand, we are interested in characterizing the existence of extraneous attracting fixed points
when the methods in the family are applied to polynomial equations. On the other hand, we are
also interested in studying the free critical points of the methods in the family, as a previous step to
determine the existence of attracting cycles. In both cases, we want to identify situations where the
methods in the family have bad behavior from the root-finding point of view. Finally, and joining
these two studies, we look for polynomials for which there are methods in the family where these
two situations happen simultaneously. The rational map obtained by applying a method in the
Chebyshev–Halley family to a polynomial has both super-attracting extraneous fixed points and
super-attracting cycles different from the roots of the polynomial.

Keywords: Chebyshev–Halley family of iterative methods; extraneous fixed points; critical points;
parameter plane; dynamical systems

MSC: 37F10; 65H05

1. Introduction

The well-known Chebyshev–Halley family of iterative methods (CH from now on)
for solving nonlinear scalar equations, f (z) = 0, was first introduced by Werner [1] in
1980. This family, initially defined for real-valued functions, has been extended to complex
variables, systems of equations, or even equations defined in Banach spaces, as can be
seen, for instance, in [2–5]. In this work, we focus our interest on functions defined on the
complex plane f : C→ C.

Each member in CH is given by an iteration map, which can be seen as a modification
of the Newton iteration map,

N(z) = z− f (z)
f ′(z)

, (1)

with the inclusion of a parameter α ∈ C and new evaluations of f (z) and its derivatives up
to order two. Specifically, we build a sequence zn+1 = Gα(zn), n ≥ 0, where

Gα(z) = z−
(

1 +
1
2

L f (z)
1− αL f (z)

)
f (z)
f ′(z)

, (2)

and

L f (z) =
f (z) f ′′(z)

f ′(z)2 . (3)
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All methods in CH have the cubic order of convergence for simple roots. In the case of
multiple roots, there exist several variants of CH that make it possible to recover the cubic
order of convergence, as given by Ivanov [6] or Osada [7].

One of the reasons for considering the CH family is because it allows us to study in a
unified way the most famous third-order iterative methods, such as Chebyshev’s method
(α = 0), Halley’s method (α = 1/2), or super-Halley method (α = 1). In general, it is not
possible to establish a classification of the members of CH in terms of efficiency, velocity of
convergence, and other similar numerical criteria because the behavior of Gα(z) depends
on the considered function f (z) through the asymptotic error constant (see [8] for more
details). However, for particular problems, it is possible to find the optimal method in
CH to approximate the solution. This is the case for the calculus of nth roots, (see Dubeau
and Gnang [9] or Gutiérrez, Hernández, and Salanova [10] for a more detailed study),
the computation of the matrix sign (Cordero et al. [11]), or the simultaneous calculus of all
the roots of a polynomial (Osada [7]).

The dynamical study of the iteration maps arising from the application of the methods
in CH (2) to polynomial equations is a problem that has attracted many researchers. For in-
stance, Cordero, Torregrosa, and Vindel [12] studied the dynamics of the methods in CH
applied to quadratic polynomials. In the analysis of the corresponding parameter planes
appears a singular set, baptized as “the cat” by the authors, with curious similarities with
the Mandelbrot set. In this same paper, the existence of members in CH with a pathological
behavior as root-finding methods is emphasized; they can be attracted by limits that are
not roots of the considered equation f (z) = 0, such as periodic orbits (cycles) or extraneous
fixed points. In [13,14], it is proved that there exist methods in CH with attracting two-
cycles; Campos et al. [15,16] studied the behavior of CH for polynomials in the form zn + c,
where c is a complex parameter. In particular, they characterized methods with Fatou
components that are simply connected and, hence, the Julia set is connected; Gutiérrez,
Magreñán, and Varona [17] characterized the universal Julia sets for the methods in CH
applied to quadratic polynomials; in this same line, Babajee, Cordero, and Torregrosa [18]
introduced the Cayley Quadratic Test as a first step in the study of the stability of families
of iterative processes for solving nonlinear equations. In brief, this test allows us to check if
the universal Julia set of an iterative process is conjugated with the unit circle or not.

In the rest of this work, we continue with the dynamic study of the methods of the
CH-family. Specifically, in Section 2, we characterize the existence of super-attracting fixed
points for the methods in CH. We place a special emphasis on the case of the Chebyshev and
super-Halley methods. For these methods, we even prove the existence of polynomials with
both super-attracting fixed points and super-attracting cycles. In Section 3, we study the
number of critical points of the methods in CH. In particular, we show that the graphical
tool known as the parameter plane is useful only for two methods in the CH family:
α = 0 (Chebyshev’s method) and α = 1/2 (Halley’s method). These two cases have been
profusely studied by Gutiérrez and Varona [19] and by Roberts and Horgan-Kobelski [20],
respectively. For the rest of the methods in the family, the high number of free critical points
and the difficulty of obtaining them discourage the use of the parameter plane.

2. Fixed Points in the Family CH
In this section, we apply the methods introduced in (2) to a polynomial equation

p(z) = 0, p(z) = zd + ad−1zd−1 + · · ·+ a1z + a0, (4)

where the coefficients aj, j = 0, 1, . . . , d− 1 are constant complex numbers. We can assume,
without loss of generality, that p(z) is a monic polynomial. We use the notation Rα,p(z) for
the rational map obtained in this case

Rα,p(z) = z−
(

1 +
1
2

Lp(z)
1− αLp(z)

)
p(z)
p′(z)

, (5)
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where Lp(z) is defined in (3). In addition, we consider the rational map related to Newton’s
method (1) in the polynomial case

Rp(z) = z− p(z)
p′(z)

. (6)

The first thing to complete for investigating the dynamics of the rational maps defined
in (5) is to study its degree. Following Nayak and Pal [21], we can generalize the result
they give for Chebyshev’s method to all the methods in the family (5). The exact degree is
given in terms of the number of distinct roots of p and in terms of certain types of critical
points introduced by these authors. Indeed, given a polynomial p(z), a critical point ω ∈ C
is called special if p(ω) 6= 0 and p′′(ω) = 0.

Theorem 1. Let p(z) be the polynomial defined in (4). Let m, n, and r denote the number of its
distinct simple roots, double roots, and roots of multiplicity bigger than two, respectively. Let s be
the number of distinct special critical points of p(z). Then, for α 6= 1/2,

deg(Rα,p(z)) = 3(m + n + r)− 2− B + s,

where B is the sum of the multiplicities of all the special critical points. If p(z) has no special critical
points, then deg(Rα,p(z)) = 3(m + n + r)− 2. If p(z) has no special critical points or multiple
roots, then deg(Rα,p(z)) = 3d− 2.

Proof. This proof mimics the one given by Nayak and Pal [21] for the case of Chebyshev’s
method, R0,p(z) given by α = 0 in (5). Indeed, this proof is based on the following
factorization of the polynomial p(z), in terms of its simple, double, and multiple (with
multiplicity bigger than two) roots:

p(z) =
m

∏
i=1

(z− αi)
n

∏
j=1

(z− β j)
2

r

∏
k=1

(z− γk)
ak ,

with deg(p) = m + 2n + M, M = ∑r
k=1 ak.

So, let cj, j = 1, . . . , s be the special critical points of p(z), with multiplicities bj, then
the quotient Lp(z) defined in (3) can be written in the form

Lp(z) =
h̃(z)
g̃(z)2

m

∏
i=1

(z− αi)
1

∏s
j=1(z− cj)

bj+1 ,

where h̃(z) and g̃(z) are functions without common roots. It can be seen (in [21]) that

deg Lp(z) = 2m + 2n + 2r− 2− B− s.

Note that deg(Rα,p(z)) equals the number of fixed points of Rα,p(z) minus one (see [22]),
and the number of fixed points of Rα,p(z)) are as follows:

1. The number of different roots of p(z): m + n + r.
2. The roots of the equation Lp(z) = 2/(2α− 1), α 6= 1/2, that is, 2m + 2n + 2r− 2−

B + s.
3. The infinity point.

Consequently, deg(Rα,p(z)) = 3(m + n + r)− 2− B + s.

As a root-finder method, it would be desirable that each attracting fixed point of Rα,p(z)
would be a root of p(z). However, this “ideal behavior” is disturbed by the appearance
of other attracting phenomena, such as periodic orbits (cycles) or extraneous fixed points,
which are fixed points of Rα,p(z) that are not roots of p(z).
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It is well-known that the only fixed points of Newton’s method in the complex plane
are the roots of p(z) (see the classical book of Traub [23], for instance). If we consider the
extended complex plane, it is also known that the infinity point is a repelling fixed point
for Newton’s method, with the multiplier d/(d− 1) > 1, where d is the degree of p(z).
In addition, we have that simple roots of p(z) are super-attracting fixed points of Rp(z),
whereas roots with the multiplicity m > 1 are attracting fixed points with the multiplier
(m− 1)/m < 1.

For the case of Halley’s method (obtained for α = 1/2 in (5)), it is known (see
Kneisl [24]) that the only attracting fixed points are the roots of p(z). There exist ex-
traneous fixed points in the complex plane, but all of them are repelling with the multiplier
1 + 2/j for an adequate j ∈ N. The infinity point is a repelling fixed point for Halley’s
method, with the multiplier (d + 1)/(d− 1) > 1, where d is the degree of p(z).

For the case of the Chebyshev method (α = 0 in (5)), the existence of attracting
extraneous fixed points has been proven (see [24] Theorem 2.6.4 or Vrscay–Gilbert [25]
p. 12). In addition, in [19], the existence of super-attracting extraneous fixed points has
been established in terms of the quotients Lp(z), defined in (4), and Lp′(z), defined by

Lp′(z) =
p′(z)p′′′(z)

p′′(z)2 . (7)

In particular, ω is an extraneous fixed point of Chebyshev’s method if Lp(z) = −2. ω

is attracting if
∣∣∣6− 2Lp′(z)

∣∣∣ < 1 and super-attracting if Lp′(z) = 3.
In this section, we are going to generalize this result by determining sufficient condi-

tions for the existence of super-attracting extraneous fixed points for the methods in CH.
First, we establish a preliminary technical result that will help us in further theoretical
development.

Lemma 1. Let p(z) be a d-degree polynomial and Lp(z), Lp′(z) be the rational functions defined
in (4) and (7), respectively. Then,

L′p(z)
p(z)
p′(z)

= Lp(z)− 2Lp(z)2 + Lp′(z)Lp(z)2. (8)

Proof. The proof simply requires a process of derivation and the grouping of terms in an
appropriate way. First,

L′p(z) =
(

p(z)p′′(z)
p′(z)2

)′
=

(p′(z)p′′(z) + p(z)p′′′(z))p′(z)2 − 2p(z)p′(z)p′′(z)2

p′(z)4 ,

and next,

L′p(z)
p(z)
p′(z)

= Lp(z) +
p(z)2 p′′′(z)

p′(z)3 − 2Lp(z)2.

Just by multiplying and dividing by p′′(z)2/p′(z) in the second term, and taking (7)
into account, we arrive at the result.

Theorem 2. For α 6= 1/2, let ω ∈ C be a point such that p(ω) 6= 0, p′(ω) 6= 0, p′′(ω) 6= 0.
Then, if

Lp(ω) =
2

2α− 1
, Lp′(ω) = 3− α, (9)

ω is a super-attracting extraneous fixed point of the rational map Rα,p(z) defined in (5) and,
therefore, of the iterative method corresponding to the parameter α in CH.
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Proof. First, as p(ω) 6= 0, ω is not a root of p(z). In addition, ω is a fixed point of Rα,p(z)
because

1 +
1
2

Lp(ω)

1− αLp(ω)
= 0, (10)

just by taking into account the first equation in (9). So, ω is an extraneous fixed point of
Rα,p(z).

For ω to be a super-attractor, it must be true that R′α,p(ω) = 0. Then, taking into
account (10), we have

R′α,p(ω) = 1−
(

1 +
1
2

Lp(z)
1− αLp(z)

)′∣∣∣∣∣
z=ω

p(ω)

p′(ω)
.

Note that (
1 +

1
2

Lp(z)
1− αLp(z)

)′
=

1
2

L′p(z)
(1− αLp(z))2 ,

and then, by Lemma 1,

R′α,p(ω) = 1− 1
2

Lp(ω)− 2Lp(ω)2 + Lp′(ω)Lp(ω)2

(1− αLp(ω))2 .

As Lp(ω) = 2/(2α− 1), we obtain

R′α,p(ω) = 2(3− α− Lp′(ω)).

Finally, as Lp′(ω) = 3− α, the condition R′α,p(ω) = 0 also holds and, as a consequence,
ω is a super-attracting extraneous fixed point of the rational map Rα,p(z).

The previous theorem allows us to find, as long as its conditions are met, extraneous
super-attractor fixed points for all the methods in the family CH, with the exception of
Halley’s method (α = 1/2). Note that the conditions p(ω) 6= 0, p′(ω) 6= 0, p′′(ω) = 0
imply Lp(ω) = 0, which makes the existence of extraneous super-attractor fixed points
impossible. If α 6= 1/2, p(ω) 6= 0 and p′(ω) = 0, the expression of the corresponding
method in (5) is not well-defined.

For Halley’s method, we can give the following result, which was also proven by
Kneisl ([24] Theorem 2.6.3). Previously, we wrote the corresponding iteration function with
an alternative expression:

R1/2,p(z) = z−
(

1 +
1
2

Lp(z)
1− Lp(z)/2

)
p(z)
p′(z)

= z− 2p(z)p′(z)
2p′(z)2 − p(z)p′′(z)

. (11)

Theorem 3. Let us consider Halley’s method, obtained for α = 1/2 in CH and whose iteration
function is shown in (11). The extraneous fixed points of the rational function R1/2,p(z) are the
solutions of p′(z) = 0, with p(z) 6= 0. All of them are repulsors.

Proof. The fixed points of R1/2,p(z) are the roots of p(z) and the solutions of p′(z) = 0.
Then, ω is an extraneous fixed point of R1/2,p(z) if, and only if, p′(ω) = 0 and p(ω) 6= 0.
Let m ∈ N be the multiplicity of ω as a root of p′(z). We can then write

p′(z) = (z−ω)mg(z),

with g(ω) 6= 0. After a few calculi in (11), we obtain

R′1/2,p(ω) = 1 +
2
m

> 1.

Therefore, ω is a repelling fixed point.
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Remark 1. In the extended complex plane, the infinity point is a fixed point for the methods in CH,
with the multiplier

2d(d(α− 1)− α)

(d− 1)(2d(α− 1)− 2α + 1)
.

In the case of the most famous methods in the family, infinity is a repelling fixed point. Indeed,
for α = 0, 1/2, 1, that is, the Chebyshev, Halley, and super-Halley methods, the multiplier of the
infinity point is 2d2/((2d− 1)(d− 1)), (d + 1)/(d− 1), and 2d/(d− 1), respectively. However,
we can see that infinity is not always a repelling fixed point. Even more, for each degree d ≥ 2, we
can obtain a method corresponding with the value of

α =
d

d− 1
,

for which infinity is a super-attracting fixed point. In Figure 1, we show the basins of attraction
related to the method in CH with α = 2 applied to p(z) = z2 − 1 and related to the method in CH
with α = 3/2 applied to p(z) = z3 − 1. Together with the basins of the roots of these polynomials,
we have plotted in white the basin of attraction of the infinity point.

Figure 1. (On the left), basins of attraction of the method corresponding to α = 2 applied to the
polynomial p(z) = z2 − 1. (On the right), basins of the method corresponding to α = 3/2 are applied
to the polynomial p(z) = z3 − 1. In both cases, the basin of attraction of the infinity point can be
seen in white, whereas the basins of the roots are colored cyan-magenta or cyan-magenta-yellow,
respectively.

We are now going to characterize polynomials for which z = 0 is a strange super-
attractor fixed point for the methods of the (5) family. To perform this, we consider the
generic polynomial of degree d defined in (4).

Theorem 4. Let p(z) be the polynomial defined in (4) and Rα,p(z) be the rational map defined
in (5), with α 6= 1/2. Then, if

a1 = β, a2 =
β2

2α− 1
, a3 =

2(3− α)

3
β3

(2α− 1)2 ,

with β ∈ C \ {0}, z = 0 is a super-attracting extraneous fixed point of Rα,p(z).
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Proof. Note that since z = 0 must not be a root of p(z), we can consider, without loss
of generality, that a0 = 1. Furthermore, for the conditions of Theorem 2 to be fulfilled,
p′(0) 6= 0 and p′′(0) 6= 0, it is also necessary that a1 6= 0 and a2 6= 0. The proof continues
simply by solving the system given by Equation (9) which, in this case, is

Lp(0) =
2a2

a2
1

=
2

2α− 1
, Lp′(0) =

3a1a3

2a2
2

=
2

2α− 1
.

In particular cases, we can obtain polynomials with z = 0 as an extraneous super-
attracting fixed point for Chebyshev’s method (already known by García-Olivo et al. [26]).
In this case,

a1 = β 6= 0, a2 = −β2, a3 = 2β3. (12)

The super-Halley method is another well-known method in CH ([27,28]). However,
its dynamical properties have been less studied. We can obtain polynomials with z = 0 as
an extraneous super-attracting fixed point for the super-Halley method:

a1 = β 6= 0, a2 = β2, a3 =
4
3

β3. (13)

In the left side of Figure 2, we show the basins of attraction of Chebyshev’s method
applied to the polynomial

p(z) = z3 + z2 + 2z− 4. (14)

It is obtained by taking β = 1/2 in (12) and, next, by multiplying by four. The basin of
the root z = 1 appears colored in cyan, that of the root z = −1 +

√
3i in yellow, and that of

the root z = −1−
√

3i in magenta. The basin of attraction of the extraneous fixed point
appears in white.

Figure 2. (On the left) the basins of attraction of the Chebyshev method applied to the polynomial (14).
(On the right) the basins of attraction of the super-Halley method applied to the polynomial (15).
In both cases, the basin of attraction of the extraneous fixed point at z = 0 can be seen in white.

In the right part of Figure 2, we show the basins of attraction of the super-Halley
applied to the polynomial

p(z) = 4z3 + 3z2 + 3z + 3. (15)
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It is obtained by taking β = 1 in (13) and, next, by multiplying by three. The basin of
the three roots z = −0.873873, z = 0.0619363− 0.924344i, and z = 0.0619363+ 0.924344i are
colored in cyan, yellow, and magenta, respectively. The basin of attraction of the extraneous
fixed point z = 0 appears in white.

In general, Chebyshev’s method applied to polynomials in the form

p(z) = −1 + az + a2z2 + 2a3z3 +
d

∑
j=4

ajzj (16)

has a super-attracting extraneous fixed point at z = 0. Actually, we have

p(0) 6= 0, Lp(0) = −2, Lp′(0) = 3,

so the conditions in Theorem 2 are fulfilled.
In a similar way, the super-Halley method applied to polynomials in the form

p(z) = 1 + az + a2z2 + 4/3a3z3 +
d

∑
j=4

ajzj (17)

has a super-attracting extraneous fixed point at z = 0. Indeed, we have

p(0) 6= 0, Lp(0) = Lp′(0) = 2,

so the conditions in Theorem 2 are satisfied.

3. Critical Points in the Family CH
The parameter plane (space) is a very powerful graphical tool for better understanding

the dynamic behavior of an iterative method for solving a family of nonlinear equations
depending on a complex parameter. It is based on the Fatou–Julia Theorem [22], which
says that the immediate basin of attraction of a (super) attractor cycle contains at least one
critical point. Consequently, to determine the existence of attracting behaviors (fixed points
and cycles), we must study the iterations of the critical points of the iteration function
in question.

Let us restrict our interest to the case of iterative methods applied to polynomial
Equation (4). In this case, a free critical point of an iterative method is a critical point of
the corresponding iteration map that is not a root of the polynomial p(z). Taking into
account that the roots of p(z) are (super) attracting fixed points of the iteration map, all
of them have their own basin of attraction that is related to a critical point (the same root).
Therefore, to detect attracting behaviors different from the root, we must follow the orbits
of the free critical point.

For example, G. Roberts and J. Horgan-Kobelski [20] characterize cubic polynomials
in the form

pλ(z) = (z− 1)(z + 1)(z− λ), λ ∈ C, (18)

for which Newton’s method has super-attracting n-cycles. Specifically, they obtain (nu-
merically) some values of the parameters λn = βni, with βn given in Table 1, for which
Newton’s method applied to the polynomial pλn(z) defined in (18), with λn = βni having
a super-attracting n-cycle.
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Table 1. Approximate values of the parameter βn, for which Newton’s method applied to the
polynomial pλn (z) defined in (18), with λn = βni having a super-attracting n-cycle (see [20]).

n βn n βn n βn

2 4.500116 6 1.982100 10 1.777227
3 2.938069 7 1.892459 20 1.732819
4 2.396385 8 1.836401 25 1.732152
5 2.131089 9 1.800522 50 1.732051

The strategy consists of coloring the parameter space λ ∈ C according to the con-
vergence of the only free critical point λ/3, as performed in Figure 3. If the orbit of λ/3
converges to 1, −1, or λ, the value of the corresponding parameter λ is colored in cyan,
magenta, or yellow, respectively.

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

-0.1 -0.05 0 0.05 0.1

4.45

4.5

4.55

4.6

4.65

Figure 3. Graphic representation of the parameter plane of Newton’s method applied to polynomials
in the form (18). The figure on the right shows an enlargement of a black area where a Mandelbrot-
type set can be seen.

The black-colored regions in the parameter space are formed by the values of λ,
for which Newton’s method applied to the corresponding polynomial pλ(z), have an
attracting cycle that does not contain any root of the polynomial. The appearance of the
Mandelbrot-type sets in the black areas of the parameter plane is a notable phenomenon.

Continuing in this line of work, Roberts and Horgan-Kobelski themselves [20] or,
previously, E. R. Vrscay and W. J. Gilbert [25], prove the existence of polynomials with
attracting cycles for Halley’s method. Specifically, the table of values of βn, for which
Halley’s method applied to the polynomial pλn(z) with λn = βni, has a super-attracting
n-cycle and is shown in Table 2.

Table 2. Approximate values of the parameters βn, for which Halley’s method applied to the
polynomial pλn (z) defined in (18) with λn = βni, have super-attracting n-cycle (see [20]).

n βn n βn n βn

2 1.342232060 6 1.018656160 10 1.0011575040
3 1.158338303 7 1.009291550 20 1.0000011298
4 1.076647075 8 1.004637455 25 1.0000000353
5 1.037611090 9 1.002316127 50 1.0000000011
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The strategy to graphically represent the parameter space associated with Halley’s
method applied to polynomials of the form (18) changes slightly due to the appearance of
two free critical points:

ρ±(λ) =
2λ±

√
−2λ2 − 6
6

.

As can be seen in [20], the range of colors in the parameter plane is expanded, according
to the criteria shown in Table 3. For example, λ is colored blue if the orbit of ρ−(λ) converges
to the root −1 and the orbit of ρ+(λ) converges to the root 1. The result of coloring the
parameter plane of Halley’s method in this way is shown in Figure 4.

Table 3. Color scheme for drawing the parameter plane associated with Halley’s method applied to
the polynomials defined in (18).

Color (ρ−(λ), ρ+(λ))→ Color (ρ−(λ), ρ+(λ))→
Yellow (−1,−1) Blue (−1, 1)
Green (1,−1) Red (λ, λ)
Brown (−1, λ) Pink (λ,−1)
Orange (1, 1) Cyan (λ, 1)
Purple (1, λ)

-2. -1. 0. 1. 2.

4.

3.

2.

1.

0.

-0.1 -0.05 0. 0.05 0.1

1.5

1.45

1.4

1.35

1.3

Figure 4. Parameter plane of Halley’s method applied to the family of polynomials (18). In the figure
on the right, we can see a Mandelbrot type set that appears in an enlargement of a black area.

The richness of the dynamic study of the methods of the family CH increases when
we consider Chebyhev’s method, as evidenced in the work of Gutiérrez and Varona [19].
With techniques similar to those used for the Newton or Halley methods, values of the
parameter βn can be given, for which Chebyshev’s method applied to the polynomial
pλn(z) defined in (18) with λn = βni, which have a super-attracting n-cycle (see Table 4).

Table 4. Approximate values of the parameter βn, for which Chebyshev’s method applied to the
polynomial pλn (z) defined in (18) with λn = βni, have a super-attracting n-cycle (see [19]).

n βn n βn n βn

2 1.28657 6 1.48369 10 1.62056
3 1.34015 7 1.52557 20 1.72078
4 1.38943 8 1.56245 25 1.72856
5 1.43776 9 1.59405 50 1.72856
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The strategy for coloring the parameter plane associated with Chebyshev’s method
applied to polynomials of the family (18) is the same as that followed for Halley’s method
(see [19] for more details), studying the orbits of the two fixed points which, in this case is

ρ±(λ) =
5λ±

√
−5λ2 − 15
15

.

The result is shown in Figure 5.

-1.8 -0.9 0. 0.9 1.8

3.6

2.7

1.8

0.9

0.

-0.22 -0.11 0. 0.11 0.22

1.57

1.46

1.35

1.24

1.13

Figure 5. Parameter plane of Chebyshev’s method applied to the family of polynomials (18). In the
figure on the right, a channel of black holes around the imaginary axis can be seen.

Now, when analyzing the parameter plane associated with Chebyshev’s method
applied to the polynomials of the family (18), we have the “black holes” that appear in it,
which are caused by two reasons: attracting cycles or attracting extraneous fixed points.

On the left side of Figure 5, the parameter plane of Chebyshev’s method applied to
the family of polynomials (18) is shown. The figure on the right shows an enlargement,
around the imaginary axis, where a sort of channel of black holes can be seen. The black
hole shown below is associated with a strange fixed point at z = 2

√
3/3i. However, the rest

of the black holes in this channel are associated with attractor cycles.
Figure 6 shows two details of black holes: one associated with an extraneous fixed

point (on the left) and another with an attracting two-cycle attractor (on the right).
What happens when we want to draw the parameter plane associated with other

methods of the family CH? The situation becomes considerably more complicated. The fol-
lowing results explain the reason.

Lemma 2. Let p(z) be a polynomial and let Lp(z) and Lp′(z) be the rational functions defined
in (4) and (7), respectively. Suppose that p′(z) 6= 0 and that p′′(z) 6= 0. Then, the free critical
points of the rational function Rα,p(z) defined in (5) are solutions of the equation

Lp′(z) = 3(1− α) + α(2α− 1)Lp(z). (19)

Proof. To calculate the free critical points associated with a method in CH, we derive
the rational function Rα,p(z) that appears in (5). Taking into account (7) and Lemma 1,
we obtain

R′α,p(z) =
Lp(z)2

(
3(1− α) + α(2α− 1)Lp(z)− Lp′(z)

)
2(1− αLp(z))2 . (20)
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Note that Lp(z) 6= 0 because we are assuming that p′′(z) 6= 0 and p(z) 6= 0 because z
is a free critical point (it is not the root of p(z)). The result follows by simply solving for
Lp′(z) in the equation R′α,p(z) = 0.

-0.02 -0.01 0. 0.01 0.02

1.18

1.17

1.16

1.15

1.14

-0.0006 -0.0003 0. 0.0003 0.0006

1.2873

1.287

1.2867

1.2864

1.2861

Figure 6. Two details of black holes of different nature: (on the left) one is associated with an
extraneous fixed point and (on the right) one is associated with an attracting 2-cycle.

The analysis of Lemma 2 allows us to obtain some interesting conclusions about the
number of free critical points in the family CH. First, we note that there are two situations
for which the Equation (19) has particularly simple solutions. These are the cases where
α = 0 (Chebyshev method) and α = 1/2 (Halley method). In both cases, we arrive at
an equation of the type Lp′(z) = C with a constant C, which leads us to a polynomial
equation of degree 2d − 4, with d being the degree of the polynomial p(z). In the case
of cubic polynomials, such as those given in (18), the equation to be solved is quadratic.
Consequently, to draw the parameter plane associated with Chebyshev’s and Halley’s
methods, it is necessary to analyze the orbits of the two free critical points obtained, as has
been performed, for example, in [19,20], respectively.

The number of free critical points in other methods in CH increases, which complicates
their analysis from a dynamic point of view. For example, in another of the named methods
of the family, such as the super-Halley method (α = 1), the equation Lp′(z) = Lp(z) is
obtained. This equation leads to a polynomial equation of degree 4d− 6. In the case of cubic
polynomials (18), an equation of degree six must be solved, which greatly complicates
the process. To be more specific, there is no formula that provides in an analytic way
the roots in terms of the coefficients, as occurs in the cases of Chebyshev’s and Halley’s
method, where a quadratic equation must be solved. Furthermore, with six possible free
critical points and three roots, the range of colors to be handled is 36 = 729, which makes
it cumbersome to use, in the case of the super-Halley method, the strategy developed for
Chebyshev’s and Halley’s methods. The situation is similar for the rest of the methods
of the CH family, where the degree of the polynomial equation obtained to find the free
critical points is also 4d− 6.

4. Polynomials with Double Misbehavior

We have seen that some methods in CH can have a pathological behavior when they
are applied to polynomial equations. By pathological, we mean the convergence to points
or cycles that are not the roots of the polynomial. In particular, we have analyzed this bad
behavior for the Chebyshev and super-Halley method. We have found polynomials for
which each of these methods has extraneous fixed points or super-attracting cycles not
including the roots. Now, we face the following question: is it possible to find polynomials
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and methods in CH so that the rational map obtained by applying the method to the
polynomial has both extraneous fixed points and super-attracting cycles? Halley’s method
must be excluded from this search since it does not have attracting extraneous fixed points.
Our first “candidate” is Chebyshev’s method.

We follow a numerical strategy to find a polynomial in the form (16) (it has a super-
attracting extraneous fixed point at zero), such that Chebyshev’s method applied to it has
a super-attracting two-cycle in {−1, 1}. To perform this, let R0,p(z) be the iteration map
related to Chebyshev’s method (see (5), with α = 0). We look for a solution to the system
of equations 

R0,p(1) = −1,
R0,p(−1) = 1,
R′0,p(1) = 0,
R′0,p(−1) = 0.

(21)

Taking into account (see (20) in Lemma 2)

R′0,p(z) =
1
2
(3− Lp′(z))Lp(z)2,

the last two equations in (21) can be substituted by Lp′(1) = 3 and Lp′(−1) = 3. As we have
four equations, we take four parameters a, a4, a5, and a6 in (16). So, we solve numerically
the nonlinear system (21), and we obtain two solutions with real coefficients:

a = 0.115238, a4 = 0.00106173, a5 = 0.000786477, a6 = 0.000284636,

a = −0.115238, a4 = 0.00106173, a5 = −0.000786477, a6 = 0.000284636.

In Figure 7, we show the basins of attraction of Chebyshev’s method applied to the
polynomial

p(z) = −1 + az + a2z2 + 2a3z3 + a4z4 + a5z5 + a6z6, (22)

where a, a4, a5, and a6 are the first of the above solutions. Together with the basins of
the six roots of the polynomial, we can see (in white) the basin of the super-attracting
extraneous fixed point z = 0. In yellow, we can see the basin of the super-attracting
two-cycle {−1, 1}.

Figure 7. Two details of the basins of attraction of Chebyshev’s method applied to the polynomial
defined in (22), where we can see the basin of attraction of super-attracting extraneous fixed point (in
white) and a super-attracting 2-cycle (in yellow). The basins of the other six roots are colored with the
rest of colors (magenta, green, purple, pink, cyan, or blue).
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In the case of the super-Halley method, we proceed in a similar way. In this case, we
find a polynomial in the form (17) (it has a super-attracting extraneous fixed point at zero),
such that the super-Halley method applied to it has a super-attracting two-cycle in {−1, 1}.
To perform this, let R1,p(z) be the iteration map related to the super-Halley method (see (5),
with α = 1). We look for a solution to the system of equations

R1,p(1) = −1,
R1,p(−1) = 1,
R′1,p(1) = 0,
R′1,p(−1) = 0.

(23)

Taking into account (see (20) in Lemma 2)

R′1,p(z) =
Lp(z)− Lp′(z)
2(1− Lp(z))2 Lp(z)2,

the last two equations in (23) can be substituted by Lp(1) = Lp′(1) and Lp(−1) = Lp′(−1).
As we have four equations, we take four parameters a, a4, a5, and a6 in (17). So, we solve
numerically the nonlinear system (23), and we obtain the solution (not the only one)

a = 0.325178, a4 = −0.009199, a5 = −0.029499, a6 = −0.011043.

In Figure 8, we show the basins of attraction of the super-Halley method applied to
the polynomial

p(z) = −1 + az + a2z2 + 2a3z3 + a4z4 + a5z5 + a6z6, (24)

where a, a4, a5, and a6 are the above parameters. Together with the basins of the six roots
of the polynomial, we can see (in white) the basin of the super-attracting extraneous fixed
point z = 0. In yellow, we can see the basin of the super-attracting two-cycle {−1, 1}.

Figure 8. Two details of the basins of attraction of super-Halley method applied to the polynomial
defined in (24), where we can see the basin of attraction of super-attracting extraneous fixed point (in
white) and a super-attracting 2-cycle (in yellow). The basins of the other six roots are colored with the
rest of colors (magenta, green, purple, pink, cyan, or blue).

5. Conclusions

In this article, we have made an incursion into the dynamic study of iterative processes
for solving polynomial equations in the complex plane. We have focused our interest on the
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well-known Chebyshev–Halley family of root-finding methods. This is a one-parameter
family, depending on the parameter α ∈ C, which includes the most famous third-order
iterative methods, such as Chebyshev, Halley, or super-Halley methods. First, we have
characterized the existence of extraneous fixed points (fixed points of the iteration map that
are not roots of the corresponding polynomial) in terms of the quotients

Lp(z) =
p(z)p′′(z)

p′(z)2 and Lp′(z) =
p′(z)p′′′(z)

p′′(z)2 .

In addition, we have analyzed the behavior of the infinity point as an extraneous
fixed point, reaching the conclusion that it is not always repulsive, as in the case of the
aforementioned most famous iterative processes or even Newton’s method.

The following part of this article is devoted to the study of the critical points of the
methods in the family CH. In particular, we have given a result that characterizes the
existence and number of free critical points, that is, critical points that are not roots of the
considered polynomial. This result plays a key role in the construction of the parameter
plane related to the rational map obtained by applying the methods in CH to families of
polynomials depending on a complex parameter (we have considered the case of cubic
polynomials).As far as we know, only the parameter planes associated with the methods of
Newton, Halley, or Chebyshev have been represented (see references [19,20], for instance).
The main limitations for using the parameter plane with the rest of the methods in the
family arise when solving the equations of critical points because there is not a “closed
formula” for them. We have not managed to solve this difficulty and the problem is open
for future research. Maybe, a good starting point to face this challenge is to consider the
dynamic behavior of the super-Halley method, which has all the ingredients that we have
not been able to solve.

Finally, we conclude with another new dynamic question: the problem of finding
polynomials and methods in CH so that the rational map obtained by applying the method
to the polynomial has both extraneous fixed points and super-attracting cycles. We have
obtained some of these couples of polynomial methods by following a numerical strategy.
In fact, we have found polynomials with double misbehavior for Chebyshev and super-
Halley methods. In both cases, polynomials with a sixth-degree have been obtained. This
problem opens a suggestive line of research, with issues such as whether it is possible to
find couples of polynomial methods with double misbehavior with a lower degree. Is there
a geometric, algebraic, or analytical strategy to find these polynomials?

This work can be also extended to other problems such as nonlinear systems of
equations or nonlinear ordinary differential equations. For instance, in [29], we can find
promising results in solving these problems using an iterative scheme.
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