Alternative Use of the Waste from Ground Olive Stones in Doping Mortar Bricks for Sustainable Façades

  1. San Vicente-Navarro, Alejandro 1
  2. Mendívil-Giro, Manuel 2
  3. Los Santos-Ortega, Jorge 1
  4. Fraile-García, Esteban 1
  5. Ferreiro-Cabello, Javier 1
  1. 1 SCoDIP Group, Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain
  2. 2 GI-TENECO Group, Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain
Revista:
Buildings

ISSN: 2075-5309

Año de publicación: 2023

Volumen: 13

Número: 12

Páginas: 2992

Tipo: Artículo

DOI: 10.3390/BUILDINGS13122992 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Buildings

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

The aim of achieving sustainability in construction is a reality. A useful strategy to achieve this is the use of waste from agricultural activities. This waste could reduce the environmental impacts associated with the production of raw materials such as natural aggregate, reducing energy consumption from fossil fuels and therefore CO2 emissions. This study examines the thermal conductivity of mortars doped with ground olive stones, a residual by-product of industrial processes. The objective is to evaluate the potential of ground olive stones to improve thermal insulation in construction. Ground olive stones are used as a partial replacement for the aggregates used in mortar bricks. The methodology followed herein to quantify the benefits of this product involves creating several types of mortar with a different percentage of ground olive stones in each sample (between 0% and 30%). Thermal conductivity was determined according to UNE-EN12939:2001. Finally, a case study is conducted performing an energy simulation of a residential building to determine the energy savings derived from reducing the combined thermal demands of heating and cooling and to analyse the feasibility of the alternative use of ground olive stone residue doped in mortar bricks for new sustainable façades. The results show a saving in energy demand (heating and cooling) of 0.938 kWh/m2·year when using 30% GOS-doped mortar bricks compared to the reference bricks. This is equivalent to a decrease in energy demand of 2.23% per square meter of façade. In addition, these annual energy savings are compared to the potential thermal energy created from the combustion of ground olive stones in a biomass boiler, which is the main traditional use of this waste today. It reveals that for a doping range of 5–15%, the recovery time ranges between 30 and 75 yeas, which is within the lifetime of a building. The results demonstrate the great viability of using ground olive stones as fine aggregates in mortars and their possible application in sustainable construction, in particular in more sustainable façades that allow energy savings in buildings and therefore a lower consumption of fossil, which will make it possible to reduce greenhouse gas emissions and the excessive consumption of resources.

Información de financiación

Financiadores

  • University of La Rioja
    • REGI2023/2021
  • Santander Bank

Referencias bibliográficas

  • Andersen, (2007), Sustain. Sci., 2, pp. 133, 10.1007/s11625-006-0013-6
  • Meyer, (2009), Cem. Concr. Compos., 31, pp. 601, 10.1016/j.cemconcomp.2008.12.010
  • Malhotra, (2010), Int. J. Struct. Eng., 1, pp. 116, 10.1504/IJSTRUCTE.2010.031480
  • Chen, (2023), Environ. Chem. Lett., 21, pp. 1627, 10.1007/s10311-022-01544-4
  • Georgiades, (2023), Resour. Conserv. Recycl., 194, pp. 106998, 10.1016/j.resconrec.2023.106998
  • Fraile-Garcia, E., Ferreiro-Cabello, J., López-Ochoa, L.M., and López-González, L.M. (2017). Study of the technical feasibility of increasing the amount of recycled concrete was used in ready-mix concrete production. Materials, 10.
  • Halahla, (2019), Civ. Eng. J., 5, pp. 540, 10.28991/cej-2019-03091266
  • Akhtar, (2022), J. Mater. Res. Technol., 20, pp. 4525, 10.1016/j.jmrt.2022.09.021
  • Junaid, (2022), Constr. Build. Mater., 319, pp. 126061, 10.1016/j.conbuildmat.2021.126061
  • European Commission (2023, March 28). Waste Framework Directive (2008/98/EC)-European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/waste-framework-directive-2008-98-ec.
  • European Parliament (2023, March 28). EUR-Lex-32002L0091-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32002L0091.
  • Parracha, (2023), Constr. Build. Mater., 364, pp. 129954, 10.1016/j.conbuildmat.2022.129954
  • Francesco, (2023), Materials, 16, pp. 2111, 10.3390/ma16052111
  • Ronnakrit, (2023), Buildings, 13, pp. 1031, 10.3390/buildings13041031
  • Silva, (2013), Mater. De Construcción, 63, pp. 479, 10.3989/mc.2013.05912
  • Yesilata, (2009), Constr. Build. Mater., 23, pp. 1878, 10.1016/j.conbuildmat.2008.09.014
  • García, E., Mauricio, P., Schwarz, A., César, A., Urbano, B., and Medina, C. (2022). Proceedings of the Institution of Civil Engineers-Engineering Sustainability, Thomas Telford Ltd.
  • Cabello, (2018), Constr. Build. Mater., 176, pp. 193, 10.1016/j.conbuildmat.2018.05.015
  • Dashti, (2023), J. Clean. Prod., 428, pp. 139365, 10.1016/j.jclepro.2023.139365
  • Letelier, (2023), Dev. Built Environ., 14, pp. 100131, 10.1016/j.dibe.2023.100131
  • Eskander, (2021), Case Stud. Constr. Mater., 15, pp. e00664
  • Mebarkia, (2022), Constr. Build. Mater., 349, pp. 128707, 10.1016/j.conbuildmat.2022.128707
  • Gencel, (2021), Constr. Build. Mater., 298, pp. 123843, 10.1016/j.conbuildmat.2021.123843
  • Belhadj, (2014), Constr. Build. Mater., 66, pp. 247, 10.1016/j.conbuildmat.2014.05.090
  • Antunes, (2019), Constr. Build. Mater., 223, pp. 544, 10.1016/j.conbuildmat.2019.06.148
  • Moghadam, (2023), J. Build. Eng., 75, pp. 106906, 10.1016/j.jobe.2023.106906
  • Pilien, V.P., Promentilla, B.A.M., Leaño, L.J., Oreta, C.W.A., and Ongpeng, C.M.J. (2023). Confinement of Concrete Using Banana Geotextile-Reinforced Geopolymer Mortar. Sustainability, 15.
  • Kamsuwan, (2023), Lect. Notes Civ. Eng., 279, pp. 70, 10.1007/978-981-19-4293-8_8
  • Akinyemi, (2020), Constr. Build. Mater., 241, pp. 118041, 10.1016/j.conbuildmat.2020.118041
  • Sathiparan, (2023), J. Build. Eng., 66, pp. 105866, 10.1016/j.jobe.2023.105866
  • Wang, (2023), Sep. Purif. Technol., 309, pp. 123046, 10.1016/j.seppur.2022.123046
  • Lakreb, (2023), Biomass Convers. Biorefinery, 13, pp. 11997, 10.1007/s13399-021-02139-9
  • Boubakour, (2023), Ann. De Chim. Sci. Des Mater., 47, pp. 179, 10.18280/acsm.470307
  • Malchiodi, B., Marchetti, R., Barbieri, L., and Pozzi, P. (2022). Recovery of cork manufacturing waste within mortar and polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials. Appl. Sci., 12.
  • Olaiya, (2023), Appl. Sci., 5, pp. 140
  • Bishetti, (2023), Lect. Notes Civ. Eng., 281, pp. 209, 10.1007/978-981-19-4731-5_19
  • Barbuta, (2022), Rev. Romana Mater., 52, pp. 83
  • Gudia, (2023), J. Build. Eng., 76, pp. 107221, 10.1016/j.jobe.2023.107221
  • Madhanagopal, A., Arunkumar, S., Jagatheesan, K., and Adinarayanan, A. Investigation on mechanical and thermal properties of clay brick additions with sugarcane bagasse ash and nanoparticles. Biomass Convers Biorefinery.
  • Hussien, (2022), J. Eng. Appl. Sci., 69, pp. 31, 10.1186/s44147-022-00076-6
  • Prayuda, (2023), Innov. Infrastruct. Solut., 8, pp. 227, 10.1007/s41062-023-01200-y
  • Khan, (2023), Results Eng., 20, pp. 101435, 10.1016/j.rineng.2023.101435
  • Barreca, (2013), Energy Build., 62, pp. 507, 10.1016/j.enbuild.2013.03.040
  • Ince, (2021), Constr. Build. Mater., 299, pp. 123891, 10.1016/j.conbuildmat.2021.123891
  • Conde, (2018), J. Mater. Civ. Eng., 30, pp. 04017273, 10.1061/(ASCE)MT.1943-5533.0002148
  • Pokorny, (2022), Constr. Build. Mater., 358, pp. 129436, 10.1016/j.conbuildmat.2022.129436
  • (2023, June 29). Anuario. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2021/default.aspx.
  • Abdelhamid, A.A., Badr, H.M., Mohamed, A.R., and Saleh, M.H. (2023). Using Agricultural Mixed Waste as a Sustainable Technique for Removing Stable Isotopes and Radioisotopes from the Aquatic Environment. Sustainability, 15.
  • Cabello, J.F., Garcia, E.F., Espinoza, A.P., and Martínez de Pison, F.J. (2022). Strength Performance of Different Mortar Doped Using Olive Stone as Lightweight Aggregate. Buildings, 12.
  • (2023, May 05). UNE-EN 933-1:2012. Available online: https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049638.
  • (2023, June 26). UNE 7 133. Available online: https://books.google.es/books/about/UNE_7_133.html?id=P6VyswEACAAJ&hl=e.
  • (2023, June 26). UNE-EN 1744-1:2010. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0051093.
  • (2023, June 26). UNE-EN 1097-6:2014. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0052839.
  • (2023, November 06). UNE-EN 12350-2:2002. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0063378.
  • (2023, March 29). UNE-EN 12939:2001. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0044070.
  • Ministerio de Transporte, Movilidad y Agenda Urbana (2023, March 29). Código técnico de la Edificación (CTE). Available online: https://www.codigotecnico.org/.
  • (2023, March 28). Herramienta Unificada LIDER-CALENER. Available online: https://www.codigotecnico.org/Programas/HerramientaUnificadaLIDERCALENER.
  • Insitituto para la Diversifiación y Ahorro de la Energía (2023, March 28). Escala de Calificación Energética. Edificios Existentes. Available online: https://www.idae.es/uploads/documentos/documentos_11261_EscalaCalifEnerg_EdifExistentes_2011_accesible_c762988d.pdf.
  • Ministerio de Transporte, Movilidad y Agenda Urbana (2023, February 08). Digital Catalogue of Construction Elements. Available online: https://www.codigotecnico.org/Programas/CatalogoElementosConstructivos.html.
  • Spanish Institute for Energy Diversification and Savings (2023, March 29). Lowe Calorific Values of Primary Energy Sources. Available online: https://www.google.com/search?q=idae+poderes+calorificos&client=firefox-b-d&ei=VdojZIXxOvOikdUP-p2EqAY&oq=IDAE+poderes&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQARgAMgUIABCA.