Influencia de la sequía meteorológica sobre las interacciones existentes entre la sequía ecológica e hidrológica en el pirineo central español

  1. Sergio M. Vicente-Serrano 1
  2. Ahmed El Kenawy 1
  3. Javier Zabalza-Martínez 1
  4. Iván Noguera 1
  5. Dhais Peña-Angulo 2
  6. Carmelo Juez 1
  7. Magí Franquesa 1
  8. Beatriz Fernández-Duque 1
  9. Fernando Domínguez-Castro 1
  10. Lars Eklundh 3
  11. Hongxiao Jin 3
  12. Tobias Conradt 4
  13. Conor Murphy 5
  14. Jesús Julio Camarero 1
  15. Jorge Lorenzo-Lacruz 6
  1. 1 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE–CSIC), Zaragoza, Spain
  2. 2 Department of Geography, University of Zaragoza, Zaragoza, Spain
  3. 3 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
  4. 4 Potsdam Institute for Climate Impact Research, Potsdam, Germany
  5. 5 Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland
  6. 6 Departmentof Human Sciences, Area of Physical Geography, University of La Rioja, Logroño, Spain
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2023

Número: 31

Páginas: 55-85

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

Este trabajo analiza la influencia de la variabilidad de la sequía meteorológica sobre las sequías ecológica e hidrológica en una cuenca del Pirineo central español. Para ello se utilizan variables derivadas de observaciones y simulación hidroecológica con la finalidad de determinar la posible conexión entre la sequía meteorológica, ecológica e hidrológica considerando un enfoque en cascada, de tal manera que abarca diferentes variables que aportan información sobre la disponibilidad de agua en la cuenca (p. ej., la humedad del suelo, el caudal, la reserva embalsada y las descargas de agua fuera del sistema). Utilizando diferentes índices de sequía estandarizados, tanto meteorológicos, ecológicos e hidrológicos, se ha comprobado la mayor importancia de las sequías meteorológicas en los sistemas hidrológicos que en los sistemas ecológicos, y la poca influencia de la actividad y el crecimiento de la vegetación en la explicación de la variabilidad interanual de los recursos hídricos en la cuenca. Por el contrario, las sequías hidrológicas se ven fuertemente afectadas por la variabilidad de las precipitaciones, pero con importantes diferencias estacionales y escalas de tiempo a la hora de medir las sequías

Referencias bibliográficas

  • Baba, K., Shibata, R., Sibuya, M., 2004. Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46, 657–664. https://doi.org/10.1111/j.1467- 842X.2004.00360.x
  • Bachmair, S., Svensson, C., Hannaford, J., Barker, L.J., Stahl, K., 2016. A quantitative analysis to objectively appraise drought indicators and model drought impacts. Hydrol. Earth Syst. Sci. 20, 2589– 2609. https://doi.org/10.5194/hess-20-2589-2016
  • Bachmair, S., Tanguy, M., Hannaford, J., Stahl, K., 2018. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ. Res. Lett. 13. https://doi.org/10.1088/1748-9326/aaafda
  • Ball, J., Woodrow, I., Berry, J., 1987. A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis Under Different Environmental Conditions. Prog. Photosynth. Res. 4, 221–224. https://doi.org/10.1007/978-94-017-0519-6_48 Barker, L.J., Hannaford, J., Chiverton, A., Svensson, C., 2016. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 20, 2483–2505. https://doi.org/10.5194/hess-20-2483-2016
  • Beguería, S., López-Moreno, J.I., Lorente, A., Seeger, M., García-Ruiz, J.M., 2003a. Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio 32, 283–286. https://doi.org/10.1579/0044-7447-32.4.283
  • Beguería, S., López-Moreno, J.I., Lorente, A., Seeger, M., García-Ruiz, J.M., 2003b. Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio 32, 283–286. https://doi.org/10.1579/0044-7447-32.4.283
  • Berghuijs, Wouter R., Larsen, J.R., Emmerik, T.H.M. van, Woods, R.A., 2017. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 53, 8475–8486. https://doi.org/10.1002/2017WR021593
  • Berghuijs, Wouter R, Larsen, J.R., van Emmerik, T.H.M., Woods, R.A., 2017. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 53, 8475–8486. https://doi.org/10.1002/2017WR021593
  • Camarero, J.J., Bigler, C., Linares, J.C., Gil-Pelegrín, E., 2011. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For. Ecol. Manag. 262, 759–769. https://doi.org/10.1016/j.foreco.2011.05.009
  • Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1
  • Chen, B., Liu, Z., He, C., Peng, H., Xia, P., Nie, Y., 2020. The Regional Hydro-Ecological Simulation System for 30 Years: A Systematic Review. Water 12. https://doi.org/10.3390/w12102878
  • Domínguez-Castro, F., Vicente-Serrano, S.M., Tomás-Burguera, M., Peña-Gallardo, M., Beguería, S., El Kenawy, A., Luna, Y., Morata, A., 2019. High-spatial-resolution probability maps of drought duration and magnitude across Spain. Nat. Hazards Earth Syst. Sci. 19, 611–628. https://doi.org/10.5194/nhess-19-611-2019
  • Eller, C.B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., Medlyn, B.E., Wagner, Y., Klein, T., Teodoro, G.S., Oliveira, R.S., Matos, I.S., Rosado, B.H.P., Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, P., Sitch, S., Cox, P.M., 2020. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytol. 226, 1622–1637. https://doi.org/10.1111/nph.16419
  • Filoso, S., Bezerra, M.O., Weiss, K.C.B., Palmer, M.A., 2017. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 12, e0183210.
  • Fritts, H.C., 1976. Tree Rings and Climate. Academic Press. London
  • Gallart, F., Delgado, J., Beatson, S.J.V., Posner, H., Llorens, P., Marcé, R., 2011. Analysing the effect of global change on the historical trends of water resources in the headwaters of the Llobregat and Ter river basins (Catalonia, Spain). Phys. Chem. Earth 36, 655–661. https://doi.org/10.1016/j.pce.2011.04.009
  • Garcia-Ruiz, J.M., Lasanta-Martinez, T., 1990. Land-use changes in the Spanish Pyrenees. Mt. Res. Amp Dev. 10, 267–279. https://doi.org/10.2307/3673606
  • García-Ruiz, J.M., López-Moreno, J.I., Lasanta, T., Vicente-Serrano, S.M., González-Sampériz, P., Valero-Garcés, B.L., Sanjuán, Y., Beguería, S., Nadal-Romero, E., Lana-Renault, N., Gómez-Villar, A., 2015. Geo-ecological effects of global change in the Central Spanish Pyrenees: A review at different spatial and temporal scales [Los efectos geoecológicos del cambio global en el pirineo central español: Una revisión a distintas escalas espaciales y temporales. Pirineos 170. https://doi.org/10.3989/Pirineos.2015.170005
  • García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S.M., Lasanta-Martínez, T., Beguería, S., 2011. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 105, 121–139.
  • García-Ruiz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., Nadal-Romero, E., Navas, A., Latron, J., Martí-Bono, C., Arnáez, J., 2008. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 356, 245– 260. https://doi.org/10.1016/j.jhydrol.2008.04.013
  • Gazol, Antonio, Camarero, J.J., Sangüesa-Barreda, G., Vicente-Serrano, S.M., 2018. Post-drought Resilience After Forest Die-Off: Shifts in Regeneration, Composition, Growth and Productivity. Front. Plant Sci. 9, 1546. https://doi.org/10.3389/fpls.2018.01546
  • Gazol, A., Camarero, J.J., Vicente-Serrano, S.M., Sánchez-Salguero, R., Gutiérrez, E., de Luis, M., Sangüesa-Barreda, G., Novak, K., Rozas, V., Tíscar, P.A., Linares, J.C., Martín-Hernández, N., Martínez del Castillo, E., Ribas, M., García-González, I., Silla, F., Camisón, A., Génova, M., Olano, J.M., Longares, L.A., Hevia, A., Tomás-Burguera, M., Galván, J.D., 2018. Forest resilience to drought varies across biomes. Glob. Change Biol. 24. https://doi.org/10.1111/gcb.14082
  • Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., Hain, C., 2016. The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. J. Hydrometeorol. 17, 1745–1761. https://doi.org/10.1175/JHM-D-15-0121.1
  • Hoek van Dijke, A.J., Herold, M., Mallick, K., Benedict, I., Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J.J.E., Bastin, J.-F., Teuling, A.J., 2022. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368. https://doi.org/10.1038/s41561-022-00935-0
  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
  • Kim, D., Rhee, J., 2016. A drought index based on actual evapotranspiration from the Bouchet hypothesis. Geophys. Res. Lett. 43, 10,277-10,285. https://doi.org/10.1002/2016GL070302
  • Körner, C., 2015. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114. https://doi.org/10.1016/j.pbi.2015.05.003
  • Lasanta-Martínez, T., Vicente-Serrano, S.M., Cuadrat-Prats, J.M., 2005. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25. https://doi.org/10.1016/j.apgeog.2004.11.001
  • Liu, Y., Kumar, M., Katul, G.G., Feng, X., Konings, A.G., 2020. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695. https://doi.org/10.1038/s41558-020-0781-5
  • Lloyd-Hughes, B., 2014. The impracticality of a universal drought definition. Theor. Appl. Climatol. 117, 607–611. https://doi.org/10.1007/s00704-013-1025-7
  • López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., 2004. The management of a large Mediterranean reservoir: Storage regimens of the Yesa Reservoir, Upper Aragon River basin, Central Spanish Pyrenees. Environ. Manage. 34, 508–515. https://doi.org/10.1007/s00267-003-0249-1
  • López-Moreno, J.I., García-Ruiz, J.M., 2004. Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees | Influence de l’accumulation et de la fonte de la neige sur les écoulements dans les Pyrénées centrales espagnoles. Hydrol. Sci. J. 49, 787–802.
  • López-Moreno, J.I., Soubeyroux, J.M., Gascoin, S., Alonso-Gonzalez, E., Durán-Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., Morin, S., 2020. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. n/a. https://doi.org/10.1002/joc.6571
  • López-Moreno, J.I., Vicente-Serrano, S.M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., GarcíaRuiz, J.M., 2011. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 15. https://doi.org/10.5194/hess-15-311-2011
  • Martínez-Fernández, J., Sánchez, N., Herrero-Jiménez, C.M., 2013a. Recent trends in rivers with nearnatural flow regime: The case of the river headwaters in Spain. Prog. Phys. Geogr. 37, 685–700. https://doi.org/10.1177/0309133313496834
  • Martínez-Fernández, J., Sánchez, N., Herrero-Jiménez, C.M., 2013b. Recent trends in rivers with nearnatural flow regime: The case of the river headwaters in Spain. Prog. Phys. Geogr. 37, 685–700. https://doi.org/10.1177/0309133313496834
  • Massari, C., Avanzi, F., Bruno, G., Gabellani, S., Penna, D., Camici, S., 2022. Evaporation enhancement drives the European water-budget deficit during multi-year droughts. Hydrol. Earth Syst. Sci. 26, 1527–1543. https://doi.org/10.5194/hess-26-1527-2022
  • Mcdowell, N., Pockman, W.T.W.T., Allen, C.D.C.D., Breshears, D.D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G.D.G., Yepez, E.A.E.A., 2008. No Title. New Phytol. 178, 719– 739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  • McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. Eighth Conf Appl. Climatol. 179–184.
  • Mukherjee, S., Mishra, A., Trenberth, K.E., 2018. Climate Change and Drought: a Perspective on Drought Indices. Curr. Clim. Change Rep. 4, 145–163. https://doi.org/10.1007/s40641-018-0098-x
  • O’Connor, P., Murphy, C., Matthews, T., Wilby, R.L., 2022. Relating drought indices to impacts reported in newspaper articles. Int. J. Climatol. n/a. https://doi.org/10.1002/joc.7946
  • Orth, R., Destouni, G., 2018. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9. https://doi.org/10.1038/s41467-018-06013-7
  • Padrón, R.S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D.M., Mao, J., Peano, D., Krinner, G., Kim, H., Seneviratne, S.I., 2020. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481. https://doi.org/10.1038/s41561-020-0594-1
  • Pasho, E., Camarero, J.J., de Luis, M., Vicente-Serrano, S.M., 2011. Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteorol. 151. https://doi.org/10.1016/j.agrformet.2011.07.018
  • Peguero-Pina, J.J., Camarero, J.J., Abadía, A., Martín, E., González-Cascón, R., Morales, F., GilPelegrín, E., 2007. Physiological performance of silver-fir (Abies alba Mill.) populations under contrasting climates near the south-western distribution limit of the species. Flora Morphol. Distrib. Funct. Ecol. Plants 202, 226–236. https://doi.org/10.1016/j.flora.2006.06.004
  • Peña-Gallardo, M., Vicente-Serrano, S.M., Camarero, J.J., Gazol, A., Sánchez-Salguero, R., Domínguez-Castro, F., El Kenawy, A., Beguería-Portugés, S., Gutiérrez, E., de Luis, M., SangüesaBarreda, G., Novak, K., Rozas, V., Tíscar, P.A., Linares, J.C., del Castillo, E., Ribas Matamoros, M., García-González, I., Silla, F., Camisón, Á., Génova, M., Olano, J.M., Longares, L.A., Hevia, A., Galván, J.D., 2018. Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands. Forests 9.
  • Peña-Gallardo, M., Vicente-Serrano, S.M., Hannaford, J., Lorenzo-Lacruz, J., Svoboda, M., Domínguez-Castro, F., Maneta, M., Tomas-Burguera, M., Kenawy, A.E., 2019. Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States. J. Hydrol. 568, 611–625. https://doi.org/10.1016/j.jhydrol.2018.11.026
  • Pereira, L.S., Allen, R.G., Smith, M., Raes, D., 2015. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031
  • Quiring, S.M., Papakryiakou, T.N., 2003. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 118, 49–62. https://doi.org/10.1016/S0168-1923(03)00072-8
  • Sanjuán, Y., Arnáez, J., Beguería, S., Lana-Renault, N., Lasanta, T., Gómez-Villar, A., ÁlvarezMartínez, J., Coba-Pérez, P., García-Ruiz, J.M., 2018. Woody plant encroachment following grazing abandonment in the subalpine belt: a case study in northern Spain. Reg. Environ. Change 18, 1103– 1115. https://doi.org/10.1007/s10113-017-1245-y
  • Shukla, S., Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 35. https://doi.org/10.1029/2007GL032487
  • Tague, C.L., Band, L.E., 2004. RHESSys: Regional Hydro-Ecologic Simulation System—An ObjectOriented Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient Cycling. Earth Interact. 8, 1–42. https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
  • Teuling, A. J., Badts, E. de, Jansen, F.A., Fuchs, R., Buitink, J., Dijke, A.J. van, Sterling, S., 2019. Climate change, re-/afforestation, and urbanisation impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–30. https://doi.org/10.5194/hess-2018-634
  • Teuling, A J, de Badts, E., Jansen, F.A., Fuchs, R., Buitink, J., van Dijke, A.J., Sterling, S., 2019. Climate change, re-/afforestation, and urbanisation impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–30. https://doi.org/10.5194/hess-2018-634
  • Teuling, A.J., Van Loon, A.F., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U., 2013. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075. https://doi.org/10.1002/grl.50495
  • Tian, L., Yuan, S., Quiring, S.M., 2018. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteorol. 249, 107–119. https://doi.org/10.1016/J.AGRFORMET.2017.11.024
  • Trnka, M., Hlavinka, P., Mozný, M., Semerádová, D., Stepánek, P., Balek, J., Bartosová, L., Zahradnícek, P., Bláhová, M., Skalák, P., Farda, A., Hayes, M., Svoboda, M., Wagner, W., Eitzinger, J., Fischer, M., Zalud, Z., 2020. Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. Int. J. Climatol. n/a. https://doi.org/10.1002/joc.6557
  • Tsakiris, G., Pangalou, D., Vangelis, H., 2007. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 21, 821–833. https://doi.org/10.1007/s11269-006-9105-4
  • Ukkola, A.M., Prentice, I.C., Keenan, T.F., Van Dijk, A.I.J.M., Viney, N.R., Myneni, R.B., Bi, J., 2016. Reduced streamflow in water-stressed climates consistent with CO<inf>2</inf>effects on vegetation. Nat. Clim. Change 6, 75–78. https://doi.org/10.1038/nclimate2831
  • Vicente-Serrano, S.M., 2021. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ.
  • Vicente-Serrano, S.M., 2016. Foreword: Drought complexity and assessment under climate change conditions. Cuad. Investig. Geogr. 42. https://doi.org/10.18172/cig.2961
  • Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23. https://doi.org/10.1175/2009JCLI2909.1
  • Vicente-Serrano, S.M., Camarero, J.J., Zabalza, J., Sangüesa-Barreda, G., López-Moreno, J.I., Tague, C.L., 2015. Evapotranspiration deficit controls net primary production and growth of silver fir: Implications for Circum-Mediterranean forests under forecasted warmer and drier conditions. Agric. For. Meteorol. 206, 45–54. https://doi.org/10.1016/j.agrformet.2015.02.017
  • Vicente-Serrano, S M, Domínguez-Castro, F., Murphy, C., Peña-Angulo, D., Tomas-Burguera, M., Noguera, I., López-Moreno, J.I., Juez, C., Grainger, S., Eklundh, L., Conradt, T., Azorin-Molina, C., El Kenawy, A., 2021a. Increased Vegetation in Mountainous Headwaters Amplifies Water Stress During Dry Periods. Geophys. Res. Lett. 48, e2021GL094672. https://doi.org/10.1029/2021GL094672
  • Vicente-Serrano, S.M., Domínguez-Castro, F., Reig, F., Beguería, S., Tomas-Burguera, M., Latorre, B., Peña-Angulo, D., Noguera, I., Rabanaque, I., Luna, Y., Morata, A., El Kenawy, A., 2022. A near real-time drought monitoring system for Spain using automatic weather station network. Atmospheric Res. 271. https://doi.org/10.1016/j.atmosres.2022.106095 Vicente-Serrano, S.M., Lanjeri, S., López-Moreno, J.I., 2007. Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques. Int. J. Climatol. 27. https://doi.org/10.1002/joc.1460
  • Vicente-Serrano, S.M., López-Moreno, J.I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., Morán-Tejeda, E., 2012. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 17. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433
  • Vicente-Serrano, S.M., Lopez-Moreno, J.-I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., Espejo, F., 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001. https://doi.org/10.1088/1748-9326/9/4/044001
  • Vicente-Serrano, S M, Peña-Angulo, D., Murphy, C., López-Moreno, J.I., Tomas-Burguera, M., Domínguez-Castro, F., Tian, F., Eklundh, L., Cai, Z., Alvarez-Farizo, B., Noguera, I., Camarero, J.J., Sánchez-Salguero, R., Gazol, A., Grainger, S., Conradt, T., Boincean, B., El Kenawy, A., 2021b. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ. 769. https://doi.org/10.1016/j.scitotenv.2020.144702
  • Vicente-Serrano, S.M., Peña-Angulo, D., Murphy, C., López-Moreno, J.I., Tomas-Burguera, M., Domínguez-Castro, F., Tian, F., Eklundh, L., Cai, Z., Alvarez-Farizo, B., Noguera, I., Camarero, J.J., Sánchez-Salguero, R., Gazol, A., Grainger, S., Conradt, T., Boincean, B., El Kenawy, A., 2021. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ. 769. https://doi.org/10.1016/j.scitotenv.2020.144702
  • Vicente-Serrano, S.M., Peña-Gallardo, M., Hannaford, J., Murphy, C., Lorenzo-Lacruz, J., Dominguez-Castro, F., López-Moreno, J.I., Beguería, S., Noguera, I., Harrigan, S., Vidal, J.-P., 2019a. Climate, Irrigation, and Land Cover Change Explain Streamflow Trends in Countries Bordering the Northeast Atlantic. Geophys. Res. Lett. 46, 10821–10833. https://doi.org/10.1029/2019GL084084
  • Vicente-Serrano, S.M., Peña-Gallardo, M., Hannaford, J., Murphy, C., Lorenzo-Lacruz, J., Dominguez-Castro, F., López-Moreno, J.I., Beguería, S., Noguera, I., Harrigan, S., Vidal, J.-P., 2019b. Climate, Irrigation, and Land Cover Change Explain Streamflow Trends in Countries Bordering the Northeast Atlantic. Geophys. Res. Lett. 46. https://doi.org/10.1029/2019GL084084
  • Vicente-Serrano, S.M., Tomas-Burguera, M., Beguería, S., Reig, F., Latorre, B., Peña-Gallardo, M., Luna, M.Y., Morata, A., González-Hidalgo, J.C., 2017. A High Resolution Dataset of Drought Indices for Spain. Data 2.
  • Vicente-Serrano, S.M.M., Martín-Hernández, N., Reig, F., Azorin-Molina, C., Zabalza, J., Beguería, S., Domínguez-Castro, F., El Kenawy, A., Peña-Gallardo, M., Noguera, I., García, M., 2020. Vegetation greening in Spain detected from long term data (1981–2015). Int. J. Remote Sens. 41, 1709–1740. https://doi.org/10.1080/01431161.2019.1674460
  • Wang, H., Vicente-serrano, S.M., Tao, F., Zhang, X., Wang, P., Zhang, C., Chen, Y., Zhu, D., Kenawy, A.E., 2016. Monitoring winter wheat drought threat in Northern China using multiple climate-based drought indices and soil moisture during 2000–2013. Agric. For. Meteorol. 228–229. https://doi.org/10.1016/j.agrformet.2016.06.004
  • White, M.A., Thornton, P.E., Running, S.W., Nemani, R.R., 2000. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 4, 1–85. https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
  • Wilhite, D.A., Buchanan-Smith, M., 2005. Drought as hazard: Understanding the natural and social context, Drought and Water Crises: Science, Technology, and Management Issues.
  • Wilhite, D.A., Pulwarty, R.S., 2017. Drought as Hazard: Understanding the Natural and Social Context, in: Drought and Water Crises: Integrating Science, Management, and Policy. pp. 3–22.
  • Wilhite, D.A., Svoboda, M.D., Hayes, M.J., 2007. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 21, 763–774. https://doi.org/10.1007/s11269-006-9076-5
  • Yang, Y., Zhang, S., McVicar, T.R., Beck, H.E., Zhang, Y., Liu, B., 2018. Disconnection Between Trends of Atmospheric Drying and Continental Runoff. Water Resour. Res. 54, 4700–4713. https://doi.org/10.1029/2018WR022593
  • Yuan, S., Quiring, S.M., Zhao, C., 2020. Evaluating the Utility of Drought Indices as Soil Moisture Proxies for Drought Monitoring and Land–Atmosphere Interactions. J. Hydrometeorol. 21, 2157– 2175. https://doi.org/10.1175/JHM-D-20-0022.1
  • Zeng, Z., Piao, S., Li, L.Z.X., Wang, T., Ciais, P., Lian, X., Yang, Y., Mao, J., Shi, X., Myneni, R.B., 2018. Impact of Earth Greening on the Terrestrial Water Cycle. J. Clim. 31, 2633–2650. https://doi.org/10.1175/JCLI-D-17-0236.1
  • Zhang, X., Hao, Z., Singh, V.P., Zhang, Y., Feng, S., Xu, Y., Hao, F., 2022. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 838, 156021. https://doi.org/10.1016/j.scitotenv.2022.156021