Hybrid orbit propagator based on neural networks. Multivariate time series forecasting approach
- Hans Carrillo 1
- Edna Segura 1
- Rosario López 1
- Iván Pérez 1
- Juan Félix San-Juan 1
-
1
Universidad de La Rioja
info
- Hugo Sanjurjo González (ed. lit.)
- Iker Pastor López (ed. lit.)
- Pablo García Bringas (ed. lit.)
- Héctor Quintián (ed. lit.)
- Emilio Corchado (ed. lit.)
Editorial: Springer
ISSN: 2194-5357
ISBN: 978-3-030-87868-9
Año de publicación: 2022
Volumen: 1401
Páginas: 695-705
Congreso: 16th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO (16º. 2021. Bilbao)
Tipo: Aportación congreso
beta Ver similares en nube de resultadosResumen
The orbital trajectory of artificial satellites around the Earthrequires frequent corrections in response to different perturbation forces.The necessary maneuvers can be designed in simulated space environ-ments by propagating Two Line Elements with orbit propagators such asSGP4, which provides the orbital position information at a given epoch.In this work, a hybrid orbit propagator based on a neural network modelis developed. Compared with previous models, the proposed neural net-work shows generalization capabilities for different space objects, whichimplies a potential benefit for the accuracy of any classical orbit propa-gator.