Hybrid orbit propagator based on neural networks. Multivariate time series forecasting approach
- Hans Carrillo 1
- Edna Segura 1
- Rosario López 1
- Iván Pérez 1
- Juan Félix San-Juan 1
-
1
Universidad de La Rioja
info
- Hugo Sanjurjo González (ed. lit.)
- Iker Pastor López (ed. lit.)
- Pablo García Bringas (ed. lit.)
- Héctor Quintián (ed. lit.)
- Emilio Corchado (ed. lit.)
Verlag: Springer
ISSN: 2194-5357
ISBN: 978-3-030-87868-9
Datum der Publikation: 2022
Ausgabe: 1401
Seiten: 695-705
Kongress: 16th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO (16º. 2021. Bilbao)
Art: Konferenz-Beitrag
beta Ver similares en nube de resultadosZusammenfassung
The orbital trajectory of artificial satellites around the Earthrequires frequent corrections in response to different perturbation forces.The necessary maneuvers can be designed in simulated space environ-ments by propagating Two Line Elements with orbit propagators such asSGP4, which provides the orbital position information at a given epoch.In this work, a hybrid orbit propagator based on a neural network modelis developed. Compared with previous models, the proposed neural net-work shows generalization capabilities for different space objects, whichimplies a potential benefit for the accuracy of any classical orbit propa-gator.