Propuesta de intervención mediante un robot de suelo con mandos de direccionalidad programadaanálisis observacional del desarrollo del pensamiento computacional en educación infantil

  1. Marta Terroba 1
  2. Juan Miguel Ribera 1
  3. Daniel Lapresa 1
  4. M. Teresa Anguera 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

Revista:
Revista de psicodidáctica

ISSN: 1136-1034

Año de publicación: 2021

Volumen: 26

Número: 2

Páginas: 143-151

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.PSICOE.2021.03.002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de psicodidáctica

Repositorio institucional: lock_openAcceso abierto Editor

Objetivos de desarrollo sostenible

Resumen

The present work presents an intervention proposal for the development of computational thinking in early childhood education, through the use of a ground robot with programmed directional controls. Within the use of observational methodology, an observation system has been designed that allows the analysis and interpretation of the behavior displayed in the performance of the intervention proposal. The reliability of the observation system has been guaranteed in the form of inter-observer agreement, calculated using Cohen’s (1960) Kappa coefficient. Within the theory of generalizability, the measurement plan [Categories] [Steps]/[Participants], has allowed to verify a high precision reliability of the generalization of the results. The operability of the observation system has been reflected in the regular behavior structures (T-patterns) detected -through the Theme software-, which have allowed characterizing difficulties in the assimilation of an incipient computational language related to the ability of spatial orientation and the sequencing capacity of children -situations involving turning and number of commands used in the sequence-.

Información de financiación

Los autores agradecen el apoyo del subproyecto V?as de integraci?n entre datos cualitativos y cuantitativos, desarrollo del caso m?ltiple, y synthesis review como ejes principales para un futuro innovador en investigaci?n de actividad f?sica y deporte [PGC2018-098742-B-C31] (2019-2021) (Ministerio de Ciencia, Innovaci?n y Universidades / Agencia Estatal de Investigaci?n / Fondo Europeo de Desarrollo Regional), que forma parte del proyecto coordinado New approach of research in physical activity and sport from mixed methods perspective (NARPAS_MM) [SPGC201800X098742CV0]; as? como del proyecto Tecnolog?a i aplicaci? multimedia i digital als dissenys observacionals [2014 SGR 971], Generalitat de Catalunya Research Group, Grup de recerca i innovaci? en dissenys (GRID).

Referencias bibliográficas

  • Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074
  • Alonso-Tapia, J., & Nieto, C. (2019). Clima emocional de clase: naturaleza, medida, efectos e implicaciones para la educación. Revista de Psicodidáctica, 24(2), 79–87. https://doi.org/10.1016/j.psicod.2018.08.002
  • Alsina, A. (2017). Caracterizaci ́on de un modelo para fomentar la alfabetización matemática en la infancia: vinculando la investigación con las buenas prácticas. Avances de Investigaci ́on en Educaci ́on Matem ́atica, 12, 59–78. https://doi.org/10.35763/aiem.v1i12.181
  • Amatria, M., Lapresa, D., Arana, J., Anguera, M. T., & Jonsson, G. K. (2017). Detection and selection of behavioral patterns using Theme: A concrete example in grassroots soccer. Sport, 5(20), 1–16. https://doi.org/10.3390/sports5010020
  • Anguera, M. T. (1979). Observational typology. Quality & Quantity. European- Amer- ican Journal of Methodology, 13(6), 449–484
  • Anguera, M. T. (2003). Observational methods (General). In R. Fernández-Ballesteros (Ed.), Encyclopedia of psychological assessment (vol. 2) (pp. 632–637). Sage.
  • Anguera, M. T., & Izquierdo, C. (2006). Methodological approaches in human communication: From complexity of perceived situation to data analysis. In G. Riva, M. T. Anguera, B. K. Wiederhold, & F. Mantovani (Eds.), From communication to presence. Cognition, emotions and culture towards the ultimate Communicative experience (pp. 203–222). IOS Press.
  • Anguera, M. T., Blanco-Villase ̃nor, A., Hernández-Mendo, A., & Losada, J. (2011). Diseños observacionales: ajuste y aplicación en psicología del deporte. Cuadernos de Psicología del Deporte, 11(2), 63–76.
  • Anguera, M. T., Blanco-Villase ̃nor, A, Jonsson, G. K., Losada, J. L., & Portell, M (Eds.). (2019). Systematic observation: Engaging researchers in the study of daily life as it is lived. Lausanne: Frontiers Media. https://doi.org/10.3389/978-2-88945-962-9
  • Anguera, M. T., Magnusson, M. S., & Jonsson, G. K. (2007). Instrumentos no estándar. Avances en Medición, 5(1), 63–82.
  • Anguera, M. T., Portell, P., Hernández-Mendo, A., Sánchez-Algarra, P., & Jonsson, G. K. (in press). Diachronic analysis of qualitative data. In A.J. Onwuegbuzie & B. Johnson (Eds.), Reviewer’s guide for mixed methods research analysis. Routledge.
  • Anguera, M. T., Blanco-Villase ̃nor, A., Losada, J. L., Sánchez-Algarra, P., & Onwueg-buzie, A. J. (2018). Revisiting the difference between mixed methods and multimethods: is it all in the name? Quality & Quantity, 52, 2757–2770. https://doi.org/10.1007/s11135-018-0700-2
  • Anguera, M. T., Portell, M., Chacón-Moscoso, S., & Sanduvete-Chaves, S. (2018). Indirect observation in everyday contexts: concepts and methodological guidelines within a mixed methods framework. Frontiers in Psychology, 9, 13. https://doi.org/10.3389/fpsyg.2018.00013
  • Arana, J., Lapresa, D., Anguera, M. T., & Garzón, B. (2016). Ad hoc procedure for optimising agreement between observational records. Annals of Psychology, 32(2), 589–595. https://doi.org/10.6018/analesps.32.2.213551
  • Arnau, J. (2001). Dise ̃nos experimentales. Edicions Universitat de Barcelona.
  • Bakeman, R. (1978). Untangling streams of behavior: sequential analysis of observation data. In G. P. Sackett (Ed.), Observing behaviour, Vol. II: data collection and analysis methods (pp. 63–78). University Park Press.
  • Bakeman, R., & Quera, V. (1995). Analyzing interaction: sequential analysis with SDIS and GSEQ. Cambridge University Press.
  • Bers, M. U. (2008). Blocks, robots and computers: learning about technology in early childhood. Teacher’s College Press.
  • Bers, M. U. (2018). Coding as a playground: programming and computational thinking in the early childhood classroom. Routledge press.
  • Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Bers, M. U., González, C., & Armas, U. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130–145. https://doi.org/10.1016/j.compedu.2019.04.013
  • Blanco-Villaseñor, A., & Escolano-Pérez, E. (2017). Observational data analysis using generalizability theory and general and mixed linear models: an empirical study of infant learning and development. Anales of Psychology, 33(3), 450–460. https://doi.org/10.6018/analesps.33.3.271021
  • Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., & Sciortino, M. (2019). The effects of mental rotation on computational thinking. Computers & Education, 141, Article 103613 https://doi.org/10.1016/j.compedu.2019.103613
  • Clements, D. H., & Sarama, J. (1997). Research on logo: a decade of progress. Computers in the Schools, 14(1), 9–46. https://doi.org/10.1300/J025v14n01 02
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.
  • Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements: theory of generalizability for scores and profiles. Wiley.
  • Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of primary education. Computers & Education, 150, 10832. https://doi.org/10.1016/j.compedu.2020.103832
  • Diago, P. D., Arnau, D., & González-Calero, J. A. (2018). La resolución de problemas matemáticos en primeras edades escolares con Bee-bot. Matemáticas, Educación y Sociedad, 1(2), 36–50.
  • Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153–169. https://doi.org/10.28945/2094
  • Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kinder-garten children in a computer programming environment: A case study. Computers and Education, 63, 87–97. https://doi.org/10.1016/j.compedu.2012.11.016
  • Gabin, B., Camerino, O., Anguera, M. T., & Casta ̃ner, M. (2012). Lince: multiplatform sport analysis software. Procedia Social and Behavioral Sciences, 46, 4692–4694. https://doi.org/10.1016/j.sbspro.2012.06.320
  • Google for Education. https://www.google.com/edu/resources/programs/exploring-computational-thinking/, 2015
  • Gowen, J. W. (1995). Research in review. The early development of symbolic play. Young Children, 50(3), 75–84.
  • Hernández-Mendo, A., Blanco-Villase ̃nor, A., Pastrana, J. L., Morales-Sánchez, V., & Ramos-Pérez, F. J. (2016). SAGT: Aplicación informática para análisis de generalizabilidad. Revista Iberoamericana de Psicología del Ejercicio y el Deporte, 11(1), 77–89. https://doi.org/10.4321/s1578-84232012000100006
  • Jiménez-Gestal, C., Berciano, A., & Salgado, M. (2019). C ́omo trabajar la orientación espacial de modo significativo en Educaci ́on Infantil: implicaciones didácticas. Educación Matemática, 31(2), 61–74. https://doi.org/10.24844/EM3102.0
  • Kalelio ̆glu, F. (2015). Una nueva forma de ense ̃nar habilidades de programación a estudiantes de K-12: código.org. Computers in Human Behavior, 52, 200–210. https://doi.org/10.1016/j.chb.2015.05.047
  • Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255. https://doi.org/10.1007/s10643-012-0554-5
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. https://doi.org/10.2307/2529310
  • Lapresa, D., Camerino, O., Cabedo, J., Anguera, M. T., Jonsson, G. K., & Arana, J. (2015). Degradación de T-patterns en estudios observacionales: un estudio sobre la eficacia en el ataque de fútbol sala. Cuadernos de Psicología del Deporte, 15(1), 71–82. https://doi.org/10.4321/S1578-84232015000100007
  • Lapresa, D., Anguera, M. T., Alsasua, R., Arana, J., & Garzón, B. (2013). Comparative analysis of T-patterns using real time data and simulated data by assignment of conventional durations: The construction of efficacy in children’s basket- ball. International Journal of Performance Analysis in Sport, 13(2), 321–339. https://doi.org/10.1080/24748668.2013.11868651
  • Lapresa, D., Arana, J., Anguera, M. T., & Garzón, B. (2013). Comparative analysis of the sequentiality using SDIS-GSEQ and THEME: A concrete example in soccer. Journal of Sports Sciences, 31(15), 1687–1695. https://doi.org/10.1080/02640414.2013.796061
  • Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37. https://doi.org/10.1145/1929887.1929902
  • Magnusson, M. S. (1996). Hidden real-time patterns in intra- and inter-individual behavior. European Journal of Psychological Assessment, 12(2), 112–123. https://doi.org/10.1027/1015-5759.12.2.112
  • Magnusson, M. S. (2000). Discovering hidden time patterns in behavior. T-patterns and their detection. Behavior Research Methods, Instruments y Computers, 32(1), 93–110. https://doi.org/10.3758/BF03200792
  • Mercader, J., Presentación, M. J., Siegenthaler, R., Molinero, V., & Miranda, A. (2017). Motivación y rendimiento académico en matemáticas: un estudio longitudinal en las primeras etapas educativas. Revista de Psicodidáctica, 22(2), 157–163. https://doi.org/10.1016/j.psicod.2017.05.007
  • Papert, S. (1981). Mindstorms: children, computers and powerful ideas. Basic Books.
  • PatternVision Ltd, & Noldus Information Technology bv. (2004). Theme, powerful tool for detection and analysis of hidden patterns in behaviour. Reference manual, version 5.0. Noldus Information Technology bv.
  • Pérez, G., & Diago, P. D. (2018). Estudio exploratorio sobre lenguajes simbólicos de programación en tareas de resolución de problemas con Bee-bot. Magister: Revista de Formación del Profesorado e Investigación Educativa, 30(1 y 2), 9–20. https://doi.org/10.17811/msg.30.1.2018.9-20
  • Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., & Silverman, B. (1998). Digital manipulatives: new toys to think with. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 281–287). https://doi.org/10.1145/1592761.1592779
  • Santoyo, C., Jonsson, G. K., Anguera, M. T., Portell, M., Allegro, A., Colmenares, L., & Torres, G. Y. (2020). T-pattens integration strategy in a longitudinal study: A multiple case analysis. Physiology & Behavior, 222, 112–904. https://doi.org/10.1016/j.physbeh.2020.112904
  • Sarama, J., & Clements, D. H. (2004). Building blocks for early childhood mathematics. Early Childhood Research Quarterly, 19(1), 181–189. https://doi.org/10.1016/j.ecresq.2004.01.014
  • Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: Learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3–20. https://doi.org/10.1007/s10798-015-9304-5
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118