Effects of Design and Construction on the Carbon Footprint of Reinforced Concrete Columns in Residential Buildings

  1. E. Fraile-Garcia
  2. J. Ferreiro-Cabello
  3. F. J. Martínez de Pison
  4. A. V. Pernia-Espinoza
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2019

Volumen: 69

Número: 335

Tipo: Artículo

DOI: 10.3989/MC.2019.09918 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

Efectos del diseño y la construcción sobre la huella de carbono en columnas de hormigón armado para edificios residenciales. La construcción de elementos estructurales requiere materiales de alto rendimiento. Las decisiones sobre la geometría y materiales se toman durante las fases de diseño y ejecución. Este estudio analiza y evalúa factores relevantes para columnas de hormigón armado en edificios residenciales. El trabajo identifica y resalta los aspectos más sensibles en el diseño de columnas: geometría, tipo de cemento y rendimiento de resistencia del concreto. El uso de hormigón C-40 mezclado con CEM-II demostró reducir costes (hasta 17.83%) y emisiones (hasta 13.59%). La combinación ideal de barras de refuerzo y concreto está entre 1.47 y 1.73: este es el porcentaje de la relación entre área de barras de refuerzo y área de la sección de hormigón. Los medios utilizados durante la fase de ejecución afectan la viabilidad de optimizar los recursos. La ubicación del edificio tiene un impacto menor, la zona eólica ejerce más influencia que la altitud topográfica

Referencias bibliográficas

  • Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. (2015) Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 97, 146-154. https://doi.org/10.1016/j.enbuild.2015.03.054
  • Park, H.; Kwon B.; Shin Y.; Kim Y.; Hong T.; Choi S. (2013) Cost and CO2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings. Energies 6, 5609-5624. https://doi.org/10.3390/en6115609
  • Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez de Pison Ascacibar E.; Martinez de Pison Ascacibar, F. J. (2016) Minimizing greenhouse gas emissions and costs for structures with flat slabs. J. Clean. Prod. 137, 922-930. https://doi.org/10.1016/j.jclepro.2016.07.153
  • Kripka, M.; Medeiros, G. F.; Fraga, J. L. T.; Marosin, P. R. (2014) Minimizing the environmental impact of R-C structural elements. Eng. Optim. 727-730. https://www. researchgate.net/publication/265597500_Minimizing_the_ environmental_impact_of_R-C_structural_elements https://doi.org/10.1201/b17488-129
  • Guardigli, L. (2014) Comparing the environmental impact of reinforced concrete and wooden structures. Eco-Efficient Constr. Build. Mater. 49, pp. 407-433. https://doi.org/10.1533/9780857097729.3.407
  • Xiao, J.; Wang, C.; Ding, T.; Akbarnezhad, A. (2018) A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210
  • Zahra S.; Moussavi Nadoushani, A. A. (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 1, 337-346. https://doi.org/10.1016/j.enbuild.2015.05.044
  • Griffin, C. T.; Reed, B.; Hsu, S.; Cruz, P. J. S. (2010) Comparing the embodied energy of structural systems in buildings. Struct. Archit. 1367-1373. https://doi.org/10.1201/b10428-182
  • Martí, J. V.; García-Segura, T.; Yepes, V. (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J. Clean. Prod. 120, 231-240. https://doi.org/10.1016/j.jclepro.2016.02.024
  • Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2016) Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Eng. Struct. 109, 126-138. https://doi.org/10.1016/j.engstruct.2015.12.001
  • Miller, S. A.; Horvath, A.; Monteiro, P. J. M.; Ostertag, C. P. (2015) Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environ. Res. Lett. 10, 114017. https://doi.org/10.1088/1748-9326/10/11/114017
  • Peng, W.; Sui Pheng, L. (2011) Managing the Embodied Carbon of Precast Concrete Columns. J. Mater. Civ. Eng. 23, 1192-1199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000287
  • Hong, W.-K.; Park, S.-C.; Jeong, S.-Y.; Lim, G.-T.; Kim, J.-T. (2012) Evaluation of the Energy Efficiencies of Pre-cast Composite Columns. Indoor Built Environ. 21, 176-183. https://doi.org/10.1177/1420326X11420126
  • Wu, P.; Pienaar, J.; O'Brien, D. (2013) Developing a lean benchmarking process to monitor the carbon efficiency in precast concrete factories-a case study in Singapore. Coll. Publ. 8, 133-152. https://doi.org/10.3992/jgb.8.2.133
  • Wu, P. (2014) Monitoring carbon emissions in precast concrete installation through lean production - A case study in Singapore. J. Green Build. 9, 191-211. https://doi.org/10.3992/1943-4618-9.4.191
  • Oh, B. K.; Park, J. S.; Choi, S. W.; Park, H. S. (2016) Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy Build. 118, 301-315. https://doi.org/10.1016/j.enbuild.2016.03.015
  • Choi, S. W.; Oh, B. K.; Park, J. S.; Park, H. S. (2016) Sustainable design model to reduce environmental impact of building construction with composite structures. J. Clean. Prod. 137, 823-832. https://doi.org/10.1016/j.jclepro.2016.07.174
  • Kripka, M.; de Medeiros, G. F. (2012) Cross-Sectional Optimization of Reinforced Concrete Columns Considering both Economical and Environmental Costs. Appl. Mech. Mater. 193-194, 1086-1089. https://doi.org/10.4028/www.scientific.net/AMM.193-194.1086
  • Heede, P.; Van den, Maes, M.; Gruyaert, E.; Belie, N. De. (2012) Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment: a parameter study. Int. J. Environ. Sustain. Dev. 11, 32. https://doi.org/10.1504/IJESD.2012.049141
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 19, 3-12. https://doi.org/10.1007/s11367-013-0614-0
  • Yang, K.-H.; Seo, E.-A.; Choi, D.-U. (2014) Effect of fly ash on lifecycle CO2 assessment of concrete structure. Appl. Mech. Mater. 692. https://doi.org/10.4028/www.scientific.net/AMM.692.475. https://doi.org/10.4028/www.scientific.net/AMM.692.475
  • Magudeaswaran, P.; Eswaramoorthi, P. (2015) Use of industrial waste materials in sustainable green high-performance reinforced concrete short columns. Int. J. Earth Sci. Eng. 8.
  • Albitar, M.; Mohamed Ali, M. S.; Visintin, P. (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr. Build. Mater. 141, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.03.014
  • Zhang, Y. F.; Zhao, J. H.; Cai, C. S. (2012) Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams. Eng. Struct. 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
  • Hirade, T.; Odajima, N.; Kimura, H.; Kaneko, H.; Yonezawa, T. (2014) Structural performance of the steel-bar-reinforced concrete-filled circular thin steel tubular columns using high slag cement. J. Struct. Constr. Eng. (Transactions AIJ) 79, 651-660. https://doi.org/10.3130/aijs.79.651
  • AENOR GlobalEPD Program. Environmental Product Declaration Long steel laminate construction unalloyed hot oven from: corrugated bars. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM I. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM II. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM III. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM IV. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM V. 1-12 (2014).
  • Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2015) Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environ. Impact Assess. Rev. 55, 144-155. https://doi.org/10.1016/j.eiar.2015.08.004
  • Yang, K. H.; Jung, Y. B.; Cho, M. S.; Tae, S. H. (2015) Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions From Concrete. Handb. Low Carbon Concr. 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
  • Park, H. S.; Lee, H.; Kim, Y.; Hong, T.; Choi, S. W. (2014) Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy Build. 82, 378-384. https://doi.org/10.1016/j.enbuild.2014.07.038
  • Jeong, J.; Taehoon H.; Changyoon J.; Jimin K.; Minhyun L.; Kwangbok J.; Seunghwan L. (2017) An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 142, 2393-2406. https://doi.org/10.1016/j.jclepro.2016.11.035
  • Li, H.; Deng, Q.; Xia, B.; Zhang, J.; Skitmore, M. (2019) Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. J. Clean. Prod. 210, 1496-1506. https://doi.org/10.1016/j.jclepro.2018.11.102
  • Plataforma Tecnologica Española del Hormigón. Hormigón: Un Material Para Aumentar la Sotenibilidad de la Construcción. PTEH (2014). Available at: https://www.ieca.es/publicaciones/. (Accessed: 1st December 2017).
  • CYPE Ingenieros S.A. CYPE Ingenieros S.A. Software for Architecture, Engineering and Construction. Spain, 2016. (2017).
  • Ministry of Public Works Spain. Code on Structural Concrete (Spanish abbreviation - EHE-08). (2008).