Effects of Design and Construction on the Carbon Footprint of Reinforced Concrete Columns in Residential Buildings

  1. E. Fraile-Garcia
  2. J. Ferreiro-Cabello
  3. F. J. Martínez de Pison
  4. A. V. Pernia-Espinoza
Journal:
Materiales de construcción

ISSN: 0465-2746

Year of publication: 2019

Volume: 69

Issue: 335

Type: Article

DOI: 10.3989/MC.2019.09918 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Materiales de construcción

Abstract

Constructing structural elements requires high performance materials. Important decisions about geometry and materials are made during the design and execution phases. This study analyzes and evaluates the relevant factors for reinforced concrete columns made in situ for residential buildings. This article identifies and highlights the most sensitive aspects in column design: geometry, type of cement, and concrete strength performance. Using C-40 concrete mixed with CEM-II proved to cut costs (up to 17.83%) and emissions (up to 13.59%). The ideal combination of rebar and concrete is between 1.47 and 1.73: this is the percentage of the ratio between the area of rebar and the area of the concrete section. The means used during the execution phase affect resource optimization. The location of a building has only a minor impact, wherein the wind zone exercises more influence than topographic altitude.

Bibliographic References

  • Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. (2015) Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 97, 146-154. https://doi.org/10.1016/j.enbuild.2015.03.054
  • Park, H.; Kwon B.; Shin Y.; Kim Y.; Hong T.; Choi S. (2013) Cost and CO2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings. Energies 6, 5609-5624. https://doi.org/10.3390/en6115609
  • Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez de Pison Ascacibar E.; Martinez de Pison Ascacibar, F. J. (2016) Minimizing greenhouse gas emissions and costs for structures with flat slabs. J. Clean. Prod. 137, 922-930. https://doi.org/10.1016/j.jclepro.2016.07.153
  • Kripka, M.; Medeiros, G. F.; Fraga, J. L. T.; Marosin, P. R. (2014) Minimizing the environmental impact of R-C structural elements. Eng. Optim. 727-730. https://www. researchgate.net/publication/265597500_Minimizing_the_ environmental_impact_of_R-C_structural_elements https://doi.org/10.1201/b17488-129
  • Guardigli, L. (2014) Comparing the environmental impact of reinforced concrete and wooden structures. Eco-Efficient Constr. Build. Mater. 49, pp. 407-433. https://doi.org/10.1533/9780857097729.3.407
  • Xiao, J.; Wang, C.; Ding, T.; Akbarnezhad, A. (2018) A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210
  • Zahra S.; Moussavi Nadoushani, A. A. (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 1, 337-346. https://doi.org/10.1016/j.enbuild.2015.05.044
  • Griffin, C. T.; Reed, B.; Hsu, S.; Cruz, P. J. S. (2010) Comparing the embodied energy of structural systems in buildings. Struct. Archit. 1367-1373. https://doi.org/10.1201/b10428-182
  • Martí, J. V.; García-Segura, T.; Yepes, V. (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J. Clean. Prod. 120, 231-240. https://doi.org/10.1016/j.jclepro.2016.02.024
  • Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2016) Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Eng. Struct. 109, 126-138. https://doi.org/10.1016/j.engstruct.2015.12.001
  • Miller, S. A.; Horvath, A.; Monteiro, P. J. M.; Ostertag, C. P. (2015) Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environ. Res. Lett. 10, 114017. https://doi.org/10.1088/1748-9326/10/11/114017
  • Peng, W.; Sui Pheng, L. (2011) Managing the Embodied Carbon of Precast Concrete Columns. J. Mater. Civ. Eng. 23, 1192-1199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000287
  • Hong, W.-K.; Park, S.-C.; Jeong, S.-Y.; Lim, G.-T.; Kim, J.-T. (2012) Evaluation of the Energy Efficiencies of Pre-cast Composite Columns. Indoor Built Environ. 21, 176-183. https://doi.org/10.1177/1420326X11420126
  • Wu, P.; Pienaar, J.; O'Brien, D. (2013) Developing a lean benchmarking process to monitor the carbon efficiency in precast concrete factories-a case study in Singapore. Coll. Publ. 8, 133-152. https://doi.org/10.3992/jgb.8.2.133
  • Wu, P. (2014) Monitoring carbon emissions in precast concrete installation through lean production - A case study in Singapore. J. Green Build. 9, 191-211. https://doi.org/10.3992/1943-4618-9.4.191
  • Oh, B. K.; Park, J. S.; Choi, S. W.; Park, H. S. (2016) Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy Build. 118, 301-315. https://doi.org/10.1016/j.enbuild.2016.03.015
  • Choi, S. W.; Oh, B. K.; Park, J. S.; Park, H. S. (2016) Sustainable design model to reduce environmental impact of building construction with composite structures. J. Clean. Prod. 137, 823-832. https://doi.org/10.1016/j.jclepro.2016.07.174
  • Kripka, M.; de Medeiros, G. F. (2012) Cross-Sectional Optimization of Reinforced Concrete Columns Considering both Economical and Environmental Costs. Appl. Mech. Mater. 193-194, 1086-1089. https://doi.org/10.4028/www.scientific.net/AMM.193-194.1086
  • Heede, P.; Van den, Maes, M.; Gruyaert, E.; Belie, N. De. (2012) Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment: a parameter study. Int. J. Environ. Sustain. Dev. 11, 32. https://doi.org/10.1504/IJESD.2012.049141
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 19, 3-12. https://doi.org/10.1007/s11367-013-0614-0
  • Yang, K.-H.; Seo, E.-A.; Choi, D.-U. (2014) Effect of fly ash on lifecycle CO2 assessment of concrete structure. Appl. Mech. Mater. 692. https://doi.org/10.4028/www.scientific.net/AMM.692.475. https://doi.org/10.4028/www.scientific.net/AMM.692.475
  • Magudeaswaran, P.; Eswaramoorthi, P. (2015) Use of industrial waste materials in sustainable green high-performance reinforced concrete short columns. Int. J. Earth Sci. Eng. 8.
  • Albitar, M.; Mohamed Ali, M. S.; Visintin, P. (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr. Build. Mater. 141, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.03.014
  • Zhang, Y. F.; Zhao, J. H.; Cai, C. S. (2012) Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams. Eng. Struct. 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
  • Hirade, T.; Odajima, N.; Kimura, H.; Kaneko, H.; Yonezawa, T. (2014) Structural performance of the steel-bar-reinforced concrete-filled circular thin steel tubular columns using high slag cement. J. Struct. Constr. Eng. (Transactions AIJ) 79, 651-660. https://doi.org/10.3130/aijs.79.651
  • AENOR GlobalEPD Program. Environmental Product Declaration Long steel laminate construction unalloyed hot oven from: corrugated bars. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM I. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM II. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM III. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM IV. 1-12 (2014).
  • AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM V. 1-12 (2014).
  • Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2015) Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environ. Impact Assess. Rev. 55, 144-155. https://doi.org/10.1016/j.eiar.2015.08.004
  • Yang, K. H.; Jung, Y. B.; Cho, M. S.; Tae, S. H. (2015) Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions From Concrete. Handb. Low Carbon Concr. 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
  • Park, H. S.; Lee, H.; Kim, Y.; Hong, T.; Choi, S. W. (2014) Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy Build. 82, 378-384. https://doi.org/10.1016/j.enbuild.2014.07.038
  • Jeong, J.; Taehoon H.; Changyoon J.; Jimin K.; Minhyun L.; Kwangbok J.; Seunghwan L. (2017) An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 142, 2393-2406. https://doi.org/10.1016/j.jclepro.2016.11.035
  • Li, H.; Deng, Q.; Xia, B.; Zhang, J.; Skitmore, M. (2019) Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. J. Clean. Prod. 210, 1496-1506. https://doi.org/10.1016/j.jclepro.2018.11.102
  • Plataforma Tecnologica Española del Hormigón. Hormigón: Un Material Para Aumentar la Sotenibilidad de la Construcción. PTEH (2014). Available at: https://www.ieca.es/publicaciones/. (Accessed: 1st December 2017).
  • CYPE Ingenieros S.A. CYPE Ingenieros S.A. Software for Architecture, Engineering and Construction. Spain, 2016. (2017).
  • Ministry of Public Works Spain. Code on Structural Concrete (Spanish abbreviation - EHE-08). (2008).