Strong Asymptotic Behavior and Weak Convergence of Polynomials Orthogonal on an Arc of the Unit Circle.
- Hernández, M.B. 1
- Díaz, E.M. 2
-
1
Universidad de La Rioja
info
- 2 Inst. Sup. Cie. y Tecnologias Nucl., Ave. Salvador Allende y Luaces, 10600, Habana, Cuba
ISSN: 0021-9045
Any de publicació: 2001
Volum: 111
Número: 2
Pàgines: 233-255
Tipus: Article
beta Ver similares en nube de resultadosAltres publicacions en: Journal of Approximation Theory
Resum
Let σ be a finite positive Borel measure supported on an arc γ of the unit circle, such that σ′>0 a.e. on γ. We obtain a theorem about the weak convergence of the corresponding sequence of orthonormal polynomials. Moreover, we prove an analogue of the Szego-Geronimus theorem on strong asymptotics of the orthogonal polynomials on the complement of γ, which completes to its full extent a result of N. I. Akhiezer. The key tool in the proofs is the use of orthogonality with respect to varying measures. © 2001 Academic Press.