An Envelope for Malcev Algebras
- Pérez-Izquierdo, J.M. 1
- Shestakov, I.P. 23
-
1
Universidad de La Rioja
info
-
2
Universidade de São Paulo
info
-
3
Sobolev Institute of Mathematics
info
ISSN: 0021-8693
Año de publicación: 2004
Volumen: 272
Número: 1
Páginas: 379-393
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Journal of Algebra
Resumen
We prove that for every Malcev algebra M there exist an algebra U(M) and a monomorphism ι:M → U(M)- of M into the commutator algebra U(M)- such that the image of M lies into the alternative center of U(M), and U(M) is a universal object with respect to such homomorphisms. The algebra U(M), in general, is not alternative, but it has a basis of Poincaré-Birkhoff-Witt type over M and inherits some good properties of universal enveloping algebras of Lie algebras. In particular, the elements of M can be characterized as the primitive elements of the algebra U(M) with respect to the diagonal homomorphism Δ:U(M) → U(M) ⊗ U(M). An extension of Ado-Iwasawa theorem to Malcev algebras is also proved. © 2004 Published by Elsevier Inc.