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Abstract

We prove that for every Malcev algebraM there exist an algebraU(M) and a monomorphism
ι :M → U(M)− of M into the commutator algebraU(M)− such that the image ofM lies into the
alternative center ofU(M), andU(M) is a universal object with respect to such homomorphis
The algebraU(M), in general, is not alternative, but it has a basis of Poincaré–Birkhoff–Witt
over M and inherits some good properties of universal enveloping algebras of Lie algebr
particular, the elements ofM can be characterized as the primitive elements of the algebraU(M)

with respect to the diagonal homomorphism∆ :U(M) → U(M) ⊗ U(M). An extension of Ado–
Iwasawa theorem to Malcev algebras is also proved.
 2004 Published by Elsevier Inc.

1. Introduction

An anticommutative algebra(M, [ , ]) is said to be a Malcev algebra if it satisfi
the identity[J (x, y, z), x] = J (x, y, [x, z]), whereJ (x, y, z) = [[x, y], z] − [[x, z], y] −
[x, [y, z]] is the jacobian ofx, y, z [4,6,8]. Since for any Lie algebra the jacobian of a
three elements vanishes, Lie algebras fall into the variety of Malcev algebras. Amo
non-Lie Malcev algebras, the traceless elements of an octonion algebra with the p
given by the commutator is one of the most important examples [4,5,9].
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Let us denote byA− the algebra obtained from an algebraA when the productxy
is replaced by[x, y] = xy − yx. Starting with an associative algebraA one obtains
a Lie algebraA−, and conversely, the celebrated Poincaré–Birkhoff–Witt Theorem
establishes that any Lie algebra is isomorphic to a subalgebra ofA− for some associativ
algebraA. A weaker condition than the associativity for an algebra is to be alterna
An algebraA is called alternative if it satisfies the identitiesx(xy) = x2y and (yx)x =
yx2 [13]. When starting with an alternative algebraA one obtains a Malcev algeb
A−. However, at this time it remains an open problem whether any Malcev alge
isomorphic to a subalgebra ofA− for some alternative algebraA [2,10,12].

There is a more general way of constructing Malcev algebras. Given an arb
algebraA, the generalized alternative nucleus ofA is defined as

Nalt(A)= {a ∈A | (a, x, y)= −(x, a, y)= (x, y, a)∀x, y ∈A},

where(x, y, z) = (xy)z − x(yz) is the usual associator [7]. This nucleus may not b
subalgebra ofA, but it is closed under the commutator product[x, y] = xy − yx, so it is a
subalgebra ofA−. In fact (Nalt(A), [ , ]) is a Malcev algebra. IfA is an alternative algebr
thenNalt(A) = A, and we recover the construction of Malcev algebras from altern
algebras.

It seems a natural question to ask whether any Malcev algebra is isomorphi
subalgebra ofNalt(A) for some algebraA. The goal of this paper is to provide an affirmat
answer to this question.

More specifically, we prove that for every Malcev algebraM there exist an algebr
U(M) and a monomorphismι :M → U(M)− of M into the commutator algebraU(M)−
such that the image ofM lies into the alternative nucleus ofU(M), andU(M) is a
universal object with respect to such homomorphisms. The algebraU(M), in general, is
not alternative, but it has a basis of Poincaré–Birkhoff–Witt type overM and inherits some
good properties of universal enveloping algebras of Lie algebras. In particular, the ele
of M can be characterized as the primitive elements of the algebraU(M) with respect to
the diagonal homomorphism∆ :U(M)→U(M)⊗U(M). An extension of Ado–Iwasaw
theorem to Malcev algebras is also proved.

2. The universal enveloping algebra

Let (M, [ , ]) be a Malcev algebra over a commutative and associative ringφ with
1
2,

1
3 ∈ φ which is a free module overφ. Letφ{M} be the unital free non-associative algeb

on a basis ofM andI (M) the ideal ofφ{M} generated by the set

{
ab− ba − [a, b], (a, x, y)+ (x, a, y), (x, a, y)+ (x, y, a) |
a, b ∈M andx, y ∈ φ{M}}.

The natural object to consider in our context is(U(M), ι), whereU(M) = φ{M}/I (M)

and
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ι :M → Nalt
(
U(M)

)⊆U(M),

a �→ ι(a)= ā = a + I (M).

It is clear that for any Malcev homomorphismϕ :M → Nalt(A), with A a unital algebra
there exists a homomorphism̄ϕ :U(M) → A such thatϕ(1) = 1 andϕ = ϕ̄ ◦ ι. It is also
clear thatM is isomorphic to a subalgebra ofNalt(A) for someA if and only if the mapι
is injective.

Let {ai | i ∈ Λ} be a basis ofM, � an order inΛ andΩ = {(i1, . . . , in) | i1, . . . , in ∈
Λ,n ∈ N andi1 � · · · � in}. If I = (i1, . . . , in) ∈ Ω then we will usually writeāI instead
of āi1(āi2(· · · (āin−1āin) · · ·)). We understand that ifn= 0 thenI = ∅ andāI = 1. The size
n of I will be denoted by|I | while I ′ stands for(i2, . . . , in) if |I | � 1. With this notation
our main theorem can be formulated as follows:

Theorem 2.1. The set{āI | I ∈Ω} is a basis ofU(M).

We first prove that the monomials{āI | I ∈Ω}spanU(M).

Proposition 2.2. U(M)= span〈āI | I ∈Ω〉.

Proof. ConsiderU = span〈āI | I ∈ Ω〉 andUn = span〈āI | I ∈ Ω and|I | � n〉. Since
ι(M) ⊆ U andU(M) is generated byι(M), it suffices to prove thatU is a subalgebra o
U(M). Suppose that we have proved thatāUn−1 ⊆ Un and[Un−1, ā] ⊆ Un−1; then given
a ∈M andI ∈Ω with |I | = n,

[āI , ā] = [āi1āI ′, ā] = [āi1, ā]āI ′ + āi1[āI ′, ā] + 3(āi1, āI ′, ā)

= [āi1, ā]āI ′ + āi1[āI ′, ā] + 1

2

([[āi1, āI ′ ], ā]− [[āi1, ā], āI ′
]

− [
āi1, [āI ′, ā]]) ∈Un,

where we have used the identities

[xy, z]− [x, z]y − x[y, z] = (x, y, z)− (x, z, y)+ (z, x, y)

and

[[x, y], z]− [[x, z], y]− [
x, [y, z]]= (x, y, z)− (x, z, y)+ (z, x, y)

− (y, x, z)+ (y, z, x)− (z, y, x),

valid in any algebra. Therefore[Un, ā] ⊆Un. On the other hand,

āi0 āI = āi0(āi1 āI ′)= (āi0āi1)āI ′ − (āi0, āi1, āI ′)

= (āi1āi0)āI ′ + [āi0, āi1]āI ′ + (āi0, āI ′, āi1)
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≡ āi1(āi0 āI ′)+ 2(āi0, āI ′, āi1)

= āi1(āi0 āI ′)+ 1

3

([[āi0, āI ′ ], āi1
]− [[āi0, āi1], āI ′

]− [
āi0, [āI ′, āi1]

])
≡ āi1(āi0 āI ′) modU|I |

allows us to movēai0 around, and place it in a position so thati1 � · · · � i0 � · · · � in.
Therefore,āUn ⊆ Un+1 and we conclude the induction. SinceUnā ⊆ āUn + [ā,Un] ⊆
Un+1 we also obtain thatUnā ⊆Un+1. In particular,āU +Uā ⊆U .

Suppose we have proved thatāIU ⊆ U for anyI ∈Ω with |I | < n. GivenI ∈Ω with
|I | = n andx ∈ U , then

āI x = (āi1 āI ′)x = āi1(āI ′x)+ (āi1, āI ′, x)= āi1(āI ′x)+ (āI ′, x, āi1)

= āi1(āI ′x)+ (āI ′x)āi1 − āI ′(xāi1) ∈ āi1U +Uāi1 − āI ′U ⊆U.

Thus,U is a subalgebra andU(M)=U . ✷
Corollary 2.3. If M is a Lie algebra thenU(M) is isomorphic to the universal envelopin
algebra ofM.

Proof. Let U be the universal enveloping algebra ofM. SinceM is a Lie algebra then
by [7] U(M) is an associative algebra, and by the universal property ofU we obtain
a homomorphismU → U(M) with a �→ ā, a ∈ M. Conversely, sinceU is associative
M ⊆ U = Nalt(U) and we also obtain a homomorphismU(M) → U , ā �→ a, a ∈ M that
is the inverse of the previous one.✷
Definition 2.4. (U(M), ι) will be called the universal enveloping algebra of the Mal
algebraM.

Corollary 2.5. For every Malcev algebraM, the algebraU(M) has no zero divisors
Moreover, ifM is finite-dimensional thenU(M) is left and right noetherian.

Proof. It is easy to see that the sequence of subspacesUn from the proof of Proposition
2.2 defines an ascending filtration onU(M), that is,U(M) =⋃

n Un andUiUj ⊆ Ui+j .
Moreover, it follows easily from the proof of proposition that the corresponding gr
algebragr U(M) is associative and commutative. By Theorem 2.1, the algebragr U(M)

is isomorphic to the polynomial algebraφ[a1, . . . , an, . . .]. Now, the corollary is proved
just as in case of Lie algebras (see [1]).✷

3. Proof of Theorem 2.1

As for Lie algebras, we only need a minimum of information about Malcev alge
to prove Theorem 2.1. In our case this information is the relationship between M
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algebras and Lie triple systems. From a Malcev algebra(M, [ , ]) one can obtain a Lie
triple system(M, [ , , ]) by

[a, b, c] = 1

3
R(a, b)(c)= 1

3

(
2
[[a, b], c]− [[b, c], a]− [[c, a], b])

(we have added the scalar 1/3 for convenience) [5]. The operators ada :b �→ [a, b] are
derivations of this triple system, so the theory of Lie triple systems provides us withZ2-
graded Lie algebraL(M, [ , , ])= L(M)⊕M, whereL(M) is the Lie algebra generated b
the operators{ada | a ∈M}, with the product given by the rules

L(M) is a Lie subalgebra ofL(M, [ , , ]),
[ϕ,a] = ϕ(a),

[a, b] = 1

3
R(a, b),

ϕ ∈L(M), a, b ∈M, and skewsymmetry. While this connection between Malcev alge
and Lie algebras has valuable consequences in the theory of Malcev algebras,L(M, [ , , ])
will be too small for our purposes.

In any algebraA the left and right multiplication operators by elements ofNalt(A)

satisfy the relations

[La,Rb] = [Ra,Lb],
[La,Lb] = L[a,b] − 2[La,Rb],
[Ra,Rb] = −R[a,b] − 2[La,Rb]

(see [7] for details, though these relations were implicit in the proof of Proposition
Roughly speaking, these relations tell us that the Lie algebra generated by these op
depends on the Malcev algebraNalt(A) rather than on the particularA. Therefore, we
proceed to define some kind of universal version of this algebra that will be he
in the following. Let L(M) be the Lie algebra generated by{λa,ρa | a ∈ M} with
relations

λαa+βb = αλa + βλb, ραa+βb = αρa + βρb,

[λa,λb] = λ[a,b] − 2[λa,ρb], [ρa,ρb] = −ρ[a,b] − 2[λa,ρb],
[λa,ρb] = [ρa,λb], (1)

a, b ∈M, α,β ∈ φ.
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Proposition 3.1. There exists an epimorphism of Lie algebras

L(M)→L(M, [ , , ])

such thatλa �→ 1
2(ada + a) andρa �→ 1

2(−ada + a).

For short we define inL(M) the elements ada = λa − ρa , Ta = λa + ρa andDa,b =
[λa,λb] + [ρa,ρb] + [λa,ρb] = ad[a,b] − 3[λa,ρb].

Proposition 3.2. The algebraL(M) is a Z2-graded Lie algebraL(M) = L+ ⊕ L− with
L+ = span〈ada,Da,b | a, b ∈ M〉 and L− = span〈Ta | a ∈ M〉. Moreover, the mappin
Ta �→ a gives a linear isomorphism fromL− ontoM.

Proof. From relations (1) we have[Ta,Tb] = [λa,λb] + [ρa,ρb] + 2[λa,ρb] = ad[a,b]
− 2[λa,ρb]. Thus,

3[Ta,Tb] = ad[a,b] + 2Da,b. (2)

Similarly,

[ada, Tb] = [λa,λb] − [ρa,ρb] = λ[a,b] + ρ[a,b] = T[a,b]. (3)

Before computing[Da,b, Tc] we observe that

[ada,adb] = [λa,λb] + [ρa,ρb] − 2[λa,ρb] = ad[a,b] − 6[λa,ρb]
= −ad[a,b] + 2Da,b, (4)

so, 2Da,b = ad[a,b]+[ada,adb]. Now we use this relation toghether with the Jacobi iden
and (3) to obtain 2[Da,b, Tc] = [ad[a,b] + [ada,adb], Tc] = T[[a,b],c]+[[a,c],b]+[a,[b,c]]. If we
setDa,b(c)= 1

2([[a, b], c]+ [[a, c], b]+ [a, [b, c]]) then

[Da,b, Tc] = TDa,b(c). (5)

Equalities (2), (3), (4) and the Jacobi identity imply that

2[Da,b,adc] = [
3[Ta,Tb] − ad[a,b],adc

]
= 3[T[a,c], Tb] + 3[Ta,T[b,c]] + ad[[a,b],c] − 2D[a,b],c
= 2adDa,b(c) + 2(Da,[b,c] +Db,[c,a] +Dc,[a,b]). (6)

In any Malcev algebra the mapc �→ Da,b(c) is a derivation [8]. In fact, 2Da,b(c) =
2[[a, b], c]− J (a, b, c) implies that
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(
Da,b(c)+Db,c(a)+Dc,a(b)

)
= 2

[[a, b], c]− J (a, b, c)+ 2
[[b, c], a]− J (b, c, a)+ 2

[[c, a], b]− J (c, a, b)

= 2J (a, b, c)− 3J (a, b, c)= −J (a, b, c) (7)

by skewsymmetry of the jacobian [8]. Another relation satisfied by the derivationsDa,b in
any Malcev algebra isDa,[b,c] +Db,[c,a] +Dc,[a,b] = 0 [8]. We now show that this is als
true inL(M). SinceL(M) is a Lie algebra thenJ (ada,adb,adc) = 0. On the other hand
we can computeJ (ada,adb,adc) by using (4) and (6):

J (ada,adb,adc)

= [−ad[a,b] + 2Da,b,adc] + [−ad[b,c] + 2Db,c,ada] + [−ad[c,a] + 2Dc,a,adb]
= adJ (a,b,c) + 2adDa,b(c)+Db,c(a)+Dc,a(b) + 8(Da,[b,c] +Db,[c,a] +Dc,[a,b])

= 8(Da,[b,c] +Db,[c,a] +Dc,[a,b])

where the last equality follows from (7). Therefore,

Da,[b,c] +Db,[c,a] +Dc,[a,b] = 0

and

[Da,b,adc] = adDa,b(c). (8)

Finally, we use (4) and (8) to obtain[Da,b,Dc,d ] =DDa,b(c),d +Dc,Da,b(d). This proves
the first part of the proposition. The isomorphism betweenL− andM follows from the
previous proposition. ✷
Let S(M) be the usual symmetric tensor algebra onM that we can identify with
S(L−). The Z2-gradation onL(M) allows us to define easily a structure ofL(M)-
module on S(M). Since the method works in general, we start with aZ2-graded
Lie algebraL = L+ ⊕ L−, its universal enveloping algebraU(L), the left idealK
of U(L) generated byL+, i.e., K = U(L)L+, and theL-moduleU(L)/K. By the
Poincaré–Birkhoff–Witt Theorem, given a basis{xi | i ∈ Λ−} of L− and an orde
� on Λ−, then {xi1 · · ·xin + K | i1 � · · · � in andn ∈ N} is a basis ofU(L)/K (if
n = 0 then xi1 · · ·xin = 1 by convention). Therefore, we have a linear isomorph
θ :S(L−) → U(L)/K defined on the basis{xi1 · · ·xin | i1 � · · · � in andn ∈ N} of
S(L−) by xi1 · · ·xin �→ xi1 · · ·xin + K. With this isomorphism, we can pull back th
L-module structure ofU(L)/K to S(L−) by definingλ ◦ x = θ−1(λθ(x)), λ ∈ L and
x ∈ S(L−). Let S(L−) =⊕∞

i=0S(L−)i be the usual gradation onS(L−), thenS(L−) =⋃∞
n=0S(L−)n with S(L−)n = ⊕n

i=0S(L−)i becomes a filtration ofS(L−). We set
S(L−)−1 = 0.
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Lemma 3.3.

(i) L+ ◦ S(L−)n ⊆ S(L−)n andL− ◦ S(L−)n ⊆ S(L−)n+1,
(ii) if i1 � · · · � in+1 thenxik ◦ (xi1 · · · x̂ik · · ·xin+1) ≡ xi1 · · ·xik · · ·xin+1 modS(L−)n−1,

wherex̂ik denotes that this factor is omitted.

Proof. We prove (i) by induction. The casen= 0 is trivial. Now observe that

θ
(
xik ◦ (xi1 · · · x̂k · · ·xin+1)

)
= xikxi1 · · · x̂k · · ·xin+1 +K

= ([xik , xi1]xi2 · · · x̂ik · · ·xin+1 +K)+ (xi1xikxi2 · · · x̂ik · sxin+1 +K).

Since [xik , xi1] ∈ L+, the first summand lies inθ(S(L−)n−1) by the hypothesis o
induction, so moduloθ(S(L−)n−1) we can movexik around and place it in the right orde
Thus,xik ◦ (xi1 · · · x̂ik · · ·xin+1) ≡ xi1 · · ·xik · · ·xin+1 modS(L−)n−1 andL− ◦ S(L−)n ⊆
S(L−)n+1. Givenλ+ ∈L+,

θ(λ+ ◦ xi1 · · ·xin)= λ+xi1 · · ·xin +K = [λ+, xi1 · · ·xin] +K

=
∑

xi1 · · · [λ+, xij ] · · ·xin +K.

Since[λ+, xij ] ∈ L−, by the hypothesis of induction we get that each summand lie
θ(S(L−)n), thereforeL+ ◦ S(L−)n ⊆ S(L−)n as desired. Part (ii) has been proved alo
the way. ✷

Observe that the elementsλ′
a = Ta,ρ

′
a = −ρa and λ′′

a = −λa,ρ
′′
a = Ta satisfy the

relations definingL(M), so inL(M) we have endomorphismsζ, η with

ζ(λa)= Ta, η(λa)= −λa,

ζ(ρa)= −ρa, η(ρa)= Ta,

that turn out to be automorphisms sinceζ 2 = id = η2. These automorphisms are
generalization of the automorphisms involved in the Principle of Local Triality in
case ofD4. In general, they may not be inherited byL(M, [ , , ]) since the kernel of the
epimorphism in Proposition 3.1 may not be invariant, so we cannot expect to obtain
a principle for an arbitraryL(M, [ , , ]). The automorphismζηζ sendsλa to −ρa , andρa
to −λa and it is the responsible for theZ2-gradation onL(M). The structure ofL(M)-
module ofS(M) can be twisted from any automorphismξ of L(M) by ξ(λ) ◦ x to get
another moduleS(M)ξ . So, fromζ andη we obtain two extra modulesS(M)ζ andS(M)η.

Proposition 3.4. If there exists a homomorphism

∗ :S(M)ζ ⊗ S(M)η → S(M)

of L(M)-modules satisfying
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(i) a ∗ x = 2λa ◦ x andx ∗ a = 2ρa ◦ x for anya ∈M, x ∈ S(M),
(ii) 1 ∗ x = x = x ∗ 1 for anyx ∈ S(M),

then Theorem2.1holds.

Proof. We can think of∗ as a product onS(M). If that is the case then

a ∗ (x ∗ y)= 2λa ◦ (x ∗ y)= 2
(
ζ(λa) ◦ x) ∗ y + 2x ∗ (η(λa) ◦ y)

= 2(Ta ◦ x) ∗ y − 2x ∗ (λa ◦ y)
= (a ∗ x) ∗ y + (x ∗ a) ∗ y − x ∗ (a ∗ y)

and

(x ∗ y) ∗ a = 2ρa ◦ (x ∗ y)= 2
(
ζ(ρa) ◦ x) ∗ y + 2x ∗ (η(ρa) ◦ y)

= −2(ρa ◦ x) ∗ y + 2x ∗ (Ta ◦ y)
= x ∗ (y ∗ a)− (x ∗ a) ∗ y + x ∗ (a ∗ y)

imply thatM ⊆ Nalt((S(M),∗)).
Observe that

ai1 ∗ (ai2 · · ·ain)= 2λai1 ◦ (ai2 · · ·ain)= Tai1
◦ (ai2 · · ·ain)+ adai1 ◦ (ai2 · · ·ain)

= ai1 · · ·ain + adai1 ◦ (ai2 · · ·ain)≡ ai1 · · ·ain modS(M)n−1.

By iterating this argument we obtain that

ai1 ∗ (ai2 ∗ (· · · (ain−1 ∗ ain) · · ·))≡ ai1 · · ·ain modS(M)n−1.

Therefore, we have that the set

{
ai1 ∗ (ai2 ∗ (· · · (ain−1 ∗ ain) · · ·)

) | (i1, . . . , in) ∈Ω
}

(9)

is a basis ofS(M). Now, the homomorphismU(M) → (S(M),∗) from the universa
property ofU(M) maps a linear generator set{āI | I ∈ Ω} of U(M) onto a basis (9) o
S(M), therefore it is an isomorphism.✷

The definition of the product∗ is quite straightforward. We keep the notationaI =
ai1 · · ·ain whereI = (i1, . . . , in) ∈ Ω . Recall that by Lemma 3.3 the elementrI = aI −
2λai1 ◦ aI ′ lies in S(M)|I |−1 (in particular, if |I | = 1 thenrI = 0). We set 1∗ x = x, and
assume that we have definedaJ ∗ x for anyaJ with |J |< |I |. Then we define

aI ∗ x = 2Tai ◦ (aI ′ ∗ x)− 2aI ′ ∗ (ρai ◦ x)+ rI ∗ x. (10)

1 1
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As an explanation for this formula, observe that if∗ has to satisfy all the requiremen
in Proposition 3.4 thenaI ∗ x = (2λai1 ◦ aI ′ + rI ) ∗ x = (2λai1 ◦ aI ′) ∗ x + rI ∗ x =
2Tai1 ◦ (aI ′ ∗ x)− 2aI ′ ∗ (ρai1 ◦ x)+ rI ∗ x. Also note that with this definitionai1 ∗ x =
2Tai1 ◦ x − 2ρai1 ◦ x = 2λai1 ◦ x, soa ∗ x = 2λa ∗ x.

Proposition 3.5. For anyλ ∈L(M) andx, y ∈ S(M) we have

λ ◦ (x ∗ y)= (
ζ(λ) ◦ x) ∗ y + x ∗ (η(λ) ◦ y).

Proof. We will prove thatλ ◦ (aI ∗ x)= (ζ(λ) ◦ aI ) ∗ x + aI ∗ (η(λ) ◦ x) by induction on
|I |. If |I | = 0 thenaI = 1 and the formula becomesλ ◦ x = (ζ(λ) ◦ 1) ∗ x + η(λ) ◦ x. We
write λ asλ = D + λa + ρb, whereD is a linear combination of elementsDai,bi (these
elements are fixed byζ andη), so thatλ− η(λ) = λ2a−b andζ(λ) ◦ 1 = a − 1/2b. Thus,
(ζ(λ) ◦ 1) ∗ x = 2λa−1/2b ◦ x = λ2a−b ◦ x = (λ− η(λ)) ◦ x as desired. For the general ca
we observe that

λ ◦ (aI ∗ x)− (
ζ(λ) ◦ aI

) ∗ x − aI ∗ (η(λ) ◦ x)
(1)= λ ◦ (2Tai1 ◦ (aI ′ ∗ x)− 2aI ′ ∗ (ρai1 ◦ x)+ rI ∗ x)

− (
ζ(λ) ◦ (2λai1 ◦ aI ′ + rI )

) ∗ x − 2Tai1 ◦ (aI ′ ∗ (η(λ) ◦ x))
+ 2aI ′ ∗ (ρai1η(λ) ◦ x)− rI ∗ (η(λ) ◦ x)

(2)= 2λTai1 ◦ (aI ′ ∗ x)− 2λ ◦ (aI ′ ∗ (ρai1 ◦ x))− 2
(
ζ(λ)λai1

◦ aI ′
) ∗ x

− 2Tai1 ◦ (aI ′ ∗ (η(λ) ◦ x))+ 2aI ′ ∗ (ρai1η(λ) ◦ x)
= 2[λ,Tai1 ] ◦ (aI ′ ∗ x)+ 2Tai1λ ◦ (aI ′ ∗ x)− 2λ ◦ (aI ′ ∗ (ρai1 ◦ x))

− 2
(
ζ(λ)λai1

◦ aI ′
) ∗ x − 2Tai1 ◦ (aI ′ ∗ (η(λ) ◦ x))+2aI ′ ∗ (ρai1η(λ) ◦ x)

(3)= 2[λ,Tai1 ] ◦ (aI ′ ∗ x)+ 2Tai1λ ◦ (aI ′ ∗ x)− 2
(
ζ(λ) ◦ aI ′

) ∗ (ρai1 ◦ x)
− 2aI ′ ∗ (η(λ)ρai1 ◦ x)− 2

(
ζ(λ)λai1

◦ aI ′
) ∗ x

− 2Tai1 ◦ (aI ′ ∗ (η(λ) ◦ x))+ 2aI ′ ∗ (ρai1η(λ) ◦ x)
(4)= 2

([
ζ(λ), λai1

] ◦ aI ′
) ∗ x + 2Tai1λ ◦ (aI ′ ∗ x)− 2

(
ζ(λ) ◦ aI ′

) ∗ (ρai1 ◦ x)
− 2

(
ζ(λ)λai1

◦ aI ′
) ∗ x − 2Tai1 ◦ (aI ′ ∗ (η(λ) ◦ x))

= −2
(
λai1

ζ(λ) ◦ aI ′
) ∗ x + 2Tai1 ◦ (λ ◦ (aI ′ ∗ x))

− 2
(
ζ(λ) ◦ aI ′

) ∗ (ρai ◦ x)− 2Tai ◦ (aI ′ ∗ (η(λ) ◦ x))

1 1
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(5)= 2Tai1 ◦ ((ζ(λ) ◦ aI ′
) ∗ x)− 2

(
λai1

◦ (ζ(λ) ◦ aI ′
)) ∗ x

− 2
(
ζ(λ) ◦ aI ′

) ∗ (ρai1 ◦ x),
where equality (1) follows from the definitions, equalities (2)–(5) follow by the hypoth
of induction, and the others by manipulations. This shows that without lost of gene
we can assume thatλ = Tai0

for someai0. Moreover, sinceai0 ∗ aI ′ ≡ a
Î ′ modS(M)n−2

with Î ′ = (i2, . . . , i0, . . . , in) andi2 � · · · � i0 � · · · � in, then the equality

Tai0
◦ (aI ∗ x)− (λai0

◦ aI ) ∗ x − aI ∗ (ρai0 ◦ x)
= Tai1

◦ ((ai0 ∗ aI ′) ∗ x)− (
λai1

◦ (ai0 ∗ aI ′)
) ∗ x − (ai0 ∗ aI ′) ∗ (ρai1 ◦ x)

and the hypothesis of induction allow us to assume thati0 � i1. Finally, if i0 � i1 then

2(λai0 ◦ aI ) ∗ x = (a(i0,I ) − r(i0,I )) ∗ x
= 2Tai0 ◦ (aI ∗ x)− 2aI ∗ (ρai0 ◦ x)+ r(i0,I ) ∗ x − r(i0,I ) ∗ x
= 2Tai0 ◦ (aI ∗ x)− 2aI ∗ (ρai0 ◦ x),

which proves the proposition.✷
Proposition 3.6. For anyx ∈ S(M) anda ∈ M we have that1 ∗ x = x ∗ 1 = x, a ∗ x =
2λa ◦ x andx ∗ a = 2ρa ◦ x.

Proof. Observe that ifδa = η(ada) thenζ(δa)= δa , so

δa ◦ (x ∗ 1− x)= (
ζ(δa) ◦ x) ∗ 1+ x ∗ (ada ◦ 1)− δa ◦ x

= (δa ◦ x) ∗ 1− δa ◦ x. (11)

Consider nowS = span〈δa1 · · · δan ◦ 1 | a1, . . . , an ∈ M, n ∈ N〉. We keep the conventio
that if n= 0 thenδa1 · · ·δan ◦ 1 = 1. Observe that by Eq. (11)x ∗ 1− x = 0 for anyx ∈ S.
Therefore, to get the first part of the proposition it suffices to show thatS(M) = S. Since
δa ◦ 1 = (−2λa − ρa) ◦ 1 = −3/2a thenS(M)1 ⊆ S. GivenaI with I = (i1, . . . , in) then
δai1

◦ aI ′ = (−3/2Tai1 − 1/2adai1 ) ◦ aI ′ = −3/2aI − 1/2adai1 ◦ aI ′ , thus by Lemma 3.3
and induction we have thataI ∈ S. ThereforeS(M)= S.

Finally,ρa ◦ x = ρa ◦ (x ∗1)= (ζ(ρa)◦ x)∗1+x ∗ (η(ρa)◦1)= −ρa ◦ x+x ∗ (Ta ◦1)
sox ∗ a = 2ρa ◦ x. ✷

4. Malcev algebras as primitive elements in their enveloping algebras

Let C be an algebra with unit 1 over a fieldF and assume that there exists an alge
homomorphismδ :C → C ⊗F C. An elementp ∈ C is calledprimitive with respect toδ
(or simplyδ-primitive) if δ(p)= 1⊗ p + p ⊗ 1.
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If L is a Lie algebra andU(L) is its universal enveloping algebra, then it is easy to
that the diagonal mapping

∆ :L→L⊗L, ∆(l)= 1⊗ l + l ⊗ 1, l ∈L,

may be extended to an algebra homomorphism ofU(L) to U(L) ⊗F U(L), which we
will also denote by∆. The well-known Friedrichs criterion (see [1]) says that ifF has
characteristic 0 then the set of∆-primitive elements ofU(L) coincides withL.

Note that in [11] the Friedrichs criterion was generalized for primitive elements in
nonassociative algebras.

We will now show that this criterion admits a generalization for Malcev algebras
their universal enveloping algebras.

Proposition 4.1. LetM be a Malcev algebra overφ andU(M) be its universal envelopin
algebra. Then, the diagonal mapping

∆ :M →M ⊗M, ∆(l)= 1⊗ l + l ⊗ 1, l ∈M,

may be extended to an algebra homomorphism ofU(M) toU(M)⊗φ U(M).

Proof. Evidently, it suffices to prove that∆(M) ⊆ Nalt(U(M) ⊗ U(M)). Let m ∈
M, a,b, c, d ∈ U(M), then we have

(
∆(m),a ⊗ b, c⊗ d

)= ac⊗ (m,b, d)+ (m,a, c)⊗ bd

= −ac⊗ (b,m,d)− (a,m, c)⊗ bd

= −(a ⊗ b,1⊗m,c⊗ d)− (a ⊗ b,m⊗ 1, c⊗ d)

= −(a ⊗ b,∆(m), c⊗ d
)
.

Similarly, (∆(m), a⊗b, c⊗d)= (a⊗b, c⊗d,∆(m)), which proves the proposition.✷
Theorem 4.2. LetF be a field of characteristic0 and letM be a Malcev algebra overF .
ThenM coincides with the set of∆-primitive elements in the universal enveloping alge
U(M).

Proof. Let us rewrite the basis (9) ofU(M) in the form

a
k1
1 a

k2
2 · · ·akss , ki � 0. (12)

Given an element

f =
∑

k1,k2,...,ks

αk1,k2,...,ks a
k1
1 a

k2
2 · · ·akss , αk1,k2,...,ks ∈ F,

then
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l
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∆(f )= f ⊗ 1+ 1⊗ f +
∑
r

vr ⊗wr

+
s∑

j=1

aj ⊗
( ∑

k1+k2+···+ks>1

kj αk1,k2,...,ks a
k1
1 a

k2
2 · · ·akj−1

j · · ·akss
)
,

wherevr is a nonempty word of type (12) and the length ofvr is more than 1. In case th
f is primitive we must have

s∑
j=1

aj ⊗
( ∑

k1+k2+···+ks>1

kj αk1,k2,...,ks a
k1
1 a

k2
2 · · ·akj−1

j · · ·akss
)

+
∑
r

vr ⊗wr = 0.

Since the elementsu⊗ v, whereu,v are of type (12), form a base ofU(M)⊗F U(M), the
last equality yieldswr = 0 for all r, and

∑
k1+k2+···+ks>1

kj αk1,k2,...,ks a
k1
1 a

k2
2 · · ·akj−1

j · · ·akss = 0

for everyj = 1, . . . , s with kj > 0. Therefore, for every summand inf with
∑

i ki > 1, we
haveαk1,k2,...,ks = 0, and sof ∈M. ✷

5. An extension of Ado–Iwasawa theorem to Malcev algebras

The theorem of Ado–Iwasawa says that any finite-dimensional Lie algebra
faithful finite-dimensional representation. For Malcev algebras Filippov [3] proved
this theorem does not hold. He shows that a free nilpotent Malcev algebra of index
set of 6 generators over a unital commutative associative ring containing 1/6 has no faithful
representations.

For Lie algebras the Poincaré–Birkhoff–Witt Theorem says that any Lie algebraL is
a subalgebra ofA− for some unital associative algebraA. In the case thatL is finite-
dimensional, then the theorem of Ado–Iwasawa says thatA can be taken finite-dimension
too. In the previous sections we have shown that any Malcev algebraM is obtained as a
subalgebra ofNalt(A) for some algebraA with the commutator product. In this sectio
we will use the classical theorem of Ado–Iwasawa to prove that ifM is finite-dimensiona
thenA can be taken finite-dimensional too.

Lemma 5.1. Let L be a finite-dimensional Lie algebra,σ an automorphism ofL with
σ 2 = id, andL+ = {x ∈ L | σ(x) = x}. Then, there exists a finite-dimensional moduleV

ande ∈ V such that

L+ = {x ∈ L | xe = 0}.

Proof. By the Ado–Iwasawa theorem,L has a finite-dimensional faithful represen
tionW . Let {w1, . . . ,wn} be a basis ofW and{f1, . . . , fn} its dual. InW ⊗W∗ the element
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e =w1 ⊗f1 + · · ·+wn ⊗fn spans a trivial submodule. However, inV =W ⊗ (W∗)σ (the
action inW∗ is twisted byσ ) we have

xe=
n∑

i=1

xwi ⊗ fi +wi ⊗ σ(x)fi =
n∑
i=1

−wi ⊗ xfi +wi ⊗ σ(x)fi

=
n∑

i=1

wi ⊗ (
σ(x)− x

)
fi,

therefore,xe= 0 if and only if (σ (x)− x)fi = 0 for all i = 1, . . . , n. SinceW is a faithful
representation this is equivalent to saying thatx ∈ L+. ✷
Theorem 5.2. LetM be a finite-dimensional Malcev algebra over a field of characteri
�= 2,3. Then, there exists a unital finite-dimensional algebraA and a monomorphism o
Malcev algebrasι :M → Nalt(A).

Proof. LetL= L(M) andσ = ζηζ be the automorphism responsible for theZ2-gradation
L = L+ ⊕ L− of L(M). By the previous lemma, we can choose a finite-dimensionaL-
moduleV ande ∈ V such thatL+ = {x ∈ L | xe = 0}. Looking atV as anU(L)-module,
we define the left ideal of finite codimension

I = {
y ∈U(L) | ye= 0

}
which obviously containsK = U(L)L+. I/K is a submodule ofU(L)/K of finite
codimension, soI = θ−1(I/K) is a submodule ofS(L−) of finite codimension too
Identifying S(L−) with U(M) this means thatI ⊆ U(M) is invariant by left and righ
multiplications by elements ofM, so it is an ideal ofU(M) (see Lemma 4.4 in [7]) o
finite codimension. Moreover, sinceK ⊆ I andI ∩L− = 0 then

θ(I ∩M)= I ∩ (L− +K)/K = (I ∩L−)+K/K =K/K = 0,

which proves thatI ∩ M = 0. Finally, consider the unital finite-dimensional algeb
A=U(M)/I. SinceM ∩ I = 0, then the mapι :M → Nalt(A) induced byι :M → U(M)

is a monomorphism, as desired.✷
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