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Abstract

We prove that for every Malcev algebid there exist an algebr& (M) and a monomorphism
1M — U(M)~ of M into the commutator algebrid (M)~ such that the image d¥/ lies into the
alternative center ot/ (M), andU (M) is a universal object with respect to such homomorphisms.
The algebra/ (M), in general, is not alternative, but it has a basis of Poincaré—Birkhoff-Witt type
over M and inherits some good properties of universal enveloping algebras of Lie algebras. In
particular, the elements df can be characterized as the primitive elements of the algébsa)
with respect to the diagonal homomorphistn U(M) — U (M) ® U(M). An extension of Ado—
lwasawa theorem to Malcev algebras is also proved.
0 2004 Published by Elsevier Inc.

1. Introduction

An anticommutative algebréM,[,]) is said to be a Malcev algebra if it satisfies
the identity[J (x, y, 2), x] = J (x, y, [x, z]), whereJ (x, y, z) = [[x, y], z] = [[x, z], y] —
[x, [y, z]] is the jacobian ok, y, z [4,6,8]. Since for any Lie algebra the jacobian of any
three elements vanishes, Lie algebras fall into the variety of Malcev algebras. Among the
non-Lie Malcev algebras, the traceless elements of an octonion algebra with the product
given by the commutator is one of the most important examples [4,5,9].
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Let us denote byd~ the algebra obtained from an algebtawhen the producky
is replaced by[x, y] = xy — yx. Starting with an associative algebra one obtains
a Lie algebraA~, and conversely, the celebrated Poincaré—Birkhoff—Witt Theorem [1]
establishes that any Lie algebra is isomorphic to a subalgebta dér some associative
algebraA. A weaker condition than the associativity for an algebra is to be alternative.
An algebraA is called alternative if it satisfies the identitiegry) = x2y and (yx)x =
yx? [13]. When starting with an alternative algebraone obtains a Malcev algebra
A~. However, at this time it remains an open problem whether any Malcev algebra is
isomorphic to a subalgebra df~ for some alternative algebr&[2,10,12].

There is a more general way of constructing Malcev algebras. Given an arbitrary
algebraA, the generalized alternative nucleusfwofs defined as

Nalt(A)={a GA | (a:x:)’)=—(x:av)’)=(x»)’va)vx:y€A}:

where (x, y,z) = (xy)z — x(yz) is the usual associator [7]. This nucleus may not be a
subalgebra of, but it is closed under the commutator producty] = xy — yx, so itis a
subalgebra ofi~. In fact (Nait(A), [, ]) is a Malcev algebra. IA is an alternative algebra
thenNgait(A) = A, and we recover the construction of Malcev algebras from alternative
algebras.

It seems a natural question to ask whether any Malcev algebra is isomorphic to a
subalgebra o5 t(A) for some algebra. The goal of this paper is to provide an affirmative
answer to this question.

More specifically, we prove that for every Malcev algelfathere exist an algebra
U (M) and a monomorphism M — U (M)~ of M into the commutator algebi@ (M)~
such that the image o#/ lies into the alternative nucleus @f (M), and U(M) is a
universal object with respect to such homomorphisms. The algét4), in general, is
not alternative, but it has a basis of Poincaré—Birkhoff-Witt type é¢emd inherits some
good properties of universal enveloping algebras of Lie algebras. In particular, the elements
of M can be characterized as the primitive elements of the algébta) with respect to
the diagonal homomorphist: U(M) — U (M) ® U (M). An extension of Ado—Iwasawa
theorem to Malcev algebras is also proved.

2. Theuniversal enveloping algebra
Let (M,[,]) be a Malcev algebra over a commutative and associative grimgth

%, % € ¢ which is a free module over. Let¢{M} be the unital free non-associative algebra
on a basis oM and/ (M) the ideal of¢p{M} generated by the set

{ab_ba_[a7b]a (a’x’}’)+(x’aa)’)’ (-x7a’y)+(x’ysa)|
a,beMandx,ye¢{M}}.

The natural object to consider in our contexi(i8(M), ¢), whereU (M) = ¢{M}/I (M)
and
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1M — Nan(U(M)) SUM),
ar—>(a)=a=a+ 1(M).

It is clear that for any Malcev homomorphispm M — Nait(A), with A a unital algebra,
there exists a homomorphispn U (M) — A such thatp(1) =1 andgp = ¢ o . It is also
clear thatM is isomorphic to a subalgebra Nft(A) for someA if and only if the map
is injective.

Let{a; | i € A} be a basis o, < an order inA and 2 = {(i1, ...,in) | i1,...,in €
A,neNandipg < <iy). If I =(ig,...,i,) € £2 then we will usually writez; instead
of a;, (ai, (- - - (@i,_,ai,) - --)). We understand that if = 0 then/ =@ anda; = 1. The size
n of I will be denoted by{/| while I’ stands forio, ..., i,) if |I| > 1. With this notation
our main theorem can be formulated as follows:

Theorem 2.1. The sef{a; | I € 2} is a basis ofU (M).
We first prove that the monomia{a; | I € 2} span/(M).
Proposition 2.2. U(M) =spara; | I € 2).
Proof. ConsiderU = spania; | I € 2) andU,, = spanra; | I € £2 and|I| < n). Since
(M) C U andU (M) is generated by(M), it suffices to prove thal/ is a subalgebra of

U(M). Suppose that we have proved that,_; € U, and[U, -1, a] € U,—_1; then given
ae M andl € 2 with [I| =n,

lar,al =laiay,al =lai,alay +ailay, al+ 3(aiy, ar, a)
=lai,, alay +aj,lap, al+ %([[&il, apl.a] —[lai.al. ay]
— [aiy. lay. al]) € Uy,
where we have used the identities
xy,zl =[x, zly —x[y,zl=(x, y,2) = (x, 2, ) + (2, x, y)
and
[Lx. v 2] =[x, 2l y] =[x [y 2l] = (v, 2) = (2, 9) + (2o, )
—0x)+ (B, 2,x) — (2, %),

valid in any algebra. Therefofé/,,, a] < U,. On the other hand,

ajpay = ajy(aj,ap) = (Aigaiy )ay — (Qig, iy, ay)

= (ay,aig)ay + laig, ailap + @iy, ar, aiy)
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= ay (ajar) + 2(ay, ap , ai,)
o 1. _ o -
= ail(aioa[/) + é([[aioy al’]v ail] - [[aios ail]v al’] - [aios [al/v ail]])
=a;,(aj,ay) modUjy

allows us to movei;, around, and place it in a position so that< - -- <ig < -+ < iy.
Therefore,aU, < U,+1 and we conclude the induction. Sin€ga < aU, + [a, U,] C
U,+1 We also obtain thaV,a C U,+1. In particularalU + Ua C U.

Suppose we have proved thgty C U for any I € 2 with |I| < n. GivenI € £2 with
|I| =n andx € U, then

arx = (aipap)x = ai (apx) + (@i, ap, x) = ai (apx) + (@ar, x, ai,)

=aj, (apx) + (apx)ai, —ap(xay) € aj, U +Ua;; —apU CU.
Thus,U is a subalgebraand(M)=U. 0O

Corollary 2.3. If M is a Lie algebra thert/ (M) is isomorphic to the universal enveloping
algebra ofM.

Proof. Let U be the universal enveloping algebraMf. SinceM is a Lie algebra then
by [7] U(M) is an associative algebra, and by the universal propert§/ afe obtain
a homomorphisnU — U(M) with a — a, a € M. Conversely, sincé/ is associative,
M C U = Nai(U) and we also obtain a homomorphigniM) — U, a — a, a € M that
is the inverse of the previous oneC

Definition 2.4. (U (M), ) will be called the universal enveloping algebra of the Malcev
algebranM.

Corollary 2.5. For every Malcev algebra/, the algebral (M) has no zero divisors.
Moreover, ifM is finite-dimensional thet/ (M) is left and right noetherian.

Proof. It is easy to see that the sequence of subspézdsom the proof of Proposition

2.2 defines an ascending filtration 6f(M), that is,U (M) =, U, andU;U; C Ui4;.
Moreover, it follows easily from the proof of proposition that the corresponding graded
algebragr U (M) is associative and commutative. By Theorem 2.1, the alggbta(M)

is isomorphic to the polynomial algebydas, ..., a,,...]. Now, the corollary is proved
just as in case of Lie algebras (see [1])0

3. Proof of Theorem 2.1

As for Lie algebras, we only need a minimum of information about Malcev algebras
to prove Theorem 2.1. In our case this information is the relationship between Malcev
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algebras and Lie triple systems. From a Malcev alggiMa[, ]) one can obtain a Lie
triple system(M, [, ,]) by

1 1
la,b,c]= §R(a, b)(c) = 5(2[[61, bl,c]—[[b,cl,a] - [[c.al, b])

(we have added the scalay3lLfor convenience) [5]. The operators,ad — [a, b] are
derivations of this triple system, so the theory of Lie triple systems provides us ith a
graded Lie algebra (M, [,,]) = L(M) ® M, whereL (M) is the Lie algebra generated by
the operator$ad, | a € M}, with the product given by the rules

L(M) is a Lie subalgebradf (M, [,,]),
[p,al=g¢(a),

[a, b]= %R(u,b),

¢ € L(M), a,b e M, and skewsymmetry. While this connection between Malcev algebras
and Lie algebras has valuable consequences in the theory of Malcev algeti@s, , 1)
will be too small for our purposes.

In any algebraA the left and right multiplication operators by elementsNafii(A)
satisfy the relations

[La, Rp]=[Ra, Lp]l,
[Laa Lb] = L[a,b] - 2[Laa Rb]a

[Ra, Rpl = —Rpa,p) — 2[La, Rp]

(see [7] for details, though these relations were implicit in the proof of Proposition 2.2).
Roughly speaking, these relations tell us that the Lie algebra generated by these operators
depends on the Malcev algebkgi(A) rather than on the particulat. Therefore, we
proceed to define some kind of universal version of this algebra that will be helpful

in the following. Let £L(M) be the Lie algebra generated W¥,, 0, | « € M} with
relations

)\aa+ﬁb =ar; + BAp, Paa+pb = APy + Bowb,
[Aa, Ap] = )\[a,b] — 2[\a, 1], [0as op] = —Pla,b] — 2 a, ppl,
[)\a: pb] = [)Oav )"b]v (1)

a,beM,ua, pe€op.
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Proposition 3.1. There exists an epimorphism of Lie algebras
LM) - L(M,[,,]
such that., - 3(ad; +a) andp, — 3(—ad; +a).

For short we define inC(M) the elements ad= s — pa, Ty = Ag + po @nd Dy =
(Aas Ao =+ [Pas Po] + [Aa, pp] = @l p) — 3[Aa, ob].

Proposition 3.2. The algebral(M) is a Zp-graded Lie algebral(M) = L, & L_ with
L+ =spanrad,, D, p | a,b e M) and L_ = spanT, | a € M). Moreover, the mapping
T, — a gives a linear isomorphism froi_ onto M.

Proof. From relations (1) we havel,, Tp]1 = [Aq, Ap] + [0as o] + 2[Aa, pp] = @0a b
— 2[4, pp]. Thus,

3[Tu. Tyl = ady, p) + 2Dq.p- (2
Similarly,
[ad:, Tp] = [Aas Ab) — [oas P61 = Aa,b) + Pla,b] = Tia,b)- Q)
Before computingD, », 7] we observe that
[ad;, ad,] = [Aa, Ap] + [0as P61 — 2[Aas o] = @a,p) — 6[Aa b ]
= _aqa,b] + 2Da,ba (4)
so0, 2D, » = ad,.p) +[ad,, ad,]. Now we use this relation toghether with the Jacobi identity
and (3) to obtain PD, », T.1 = [ad,») + [adi, a0, ], Te] = Tija,b],c]+1la,cl,b)+a,b,c])- [ we
setD, »(c) = %([[a, bl,cl+Ila,cl, bl +[a, [b, c]]) then
[Daps Tel = Tp, 4 (c)- (5)
Equalities (2), (3), (4) and the Jacobi identity imply that
2[Dap, ad] = [3[T,, Tp] — adq,p). ad: |

= 3[Tia,c1> Tv] + 314, Tip,c1] + ad{a,61,¢c] — 2Dja,b),c
=2adp, () + 2(Da,p,c] + Db,[c.a] + De.[a.b)- (6)

In any Malcev algebra the map+— D, ,(c) is a derivation [8]. In fact, D, ,(c) =
2([a, b], c]— J(a, b, c) implies that
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Z(Da,b(c) + Dp,c(a) + Deq (b))
=2[la,bl.c]—J(a,b,c)+2[[b,cl,a] — J(b,c,a)+ 2[[c,al,b] — J(c.a,b)
=2J(a,b,c)—3J(a,b,c)=—J(a,b,c) @)

by skewsymmetry of the jacobian [8]. Another relation satisfied by the derivaligpsn
any Malcev algebra i®, p.c; + Dp.[c.a] + Dec.ja.p) = 0 [8]. We now show that this is also

true inL(M). SinceL(M) is a Lie algebra thed (ad,, ad,, ad.) = 0. On the other hand,
we can computd (ad,, ad,, ad.) by using (4) and (6):

J(ad,, ad,, ad.)
= [—ada,p) + 2D p, ad ] +[—adp ] + 2Dp ¢, adh] + [—aGc,q] + 2D 4, a0, ]
=adj(.b,c) + 28, )+ Dp.c(@)+Dea(b) T 8(Da.b.c] + Db, c.a + De.a.b1)
=8(Da.(b.c] + Db.[c.a] + De,[a.b])

where the last equality follows from (7). Therefore,

Dy 1b,c) + Db jc,a1 + De,ja,p) =0

and

[Dap,ad-]=adp, ,()- (8)

Finally, we use (4) and (8) to obtai®, ., D41 = Dp, ,(c).d + De,D, ,(a)- This proves
the first part of the proposition. The isomorphism betwégenand M follows from the
previous proposition. O

Let S(M) be the usual symmetric tensor algebra &h that we can identify with
S(L_). The Zy-gradation onL(M) allows us to define easily a structure 6{M)-
module on S(M). Since the method works in general, we start withZggraded
Lie algebral = £ & L_, its universal enveloping algebr@d (L), the left ideal K
of U(L) generated byL,, i.e., K = U(L)L,, and theL-module U(£L)/K. By the
Poincaré—Birkhoff-Witt Theorem, given a badis; | i € A_} of £L_ and an order
< on A_, then{x;,---x;, + K | i1 < --- < i,andn € N} is a basis ofU(L)/K (if

n =0 thenx;, ---x;, = 1 by convention). Therefore, we have a linear isomorphism
0:S(L_) - U(L)/K defined on the basigx;, ---x;, | i1 < --- < iy, andn € N} of
S(L-) by xiy - -xi, = xip---xi, + K. With this isomorphism, we can pull back the
£-module structure ot/ (£)/K to S(£_) by definingx o x = 6~ 1(16(x)), » € £ and
x€S(Lo). Let S(Lo) =P, S(L£_)! be the usual gradation o$(£_), thenS(L_) =
U2 o S(Lo), with S(L2), = @F_oS(L-)" becomes a filtration ofS(L_). We set
S(L-)_-1=0.
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Lemma 3.3.

(I) ‘C-i- o S(L)n SS(L)n andL_ o S(Lo), S S(ﬁ—)iz—i-l,
(ii) if ip < -+ <ipgr thenx o (xjy - %y - Xipy1) = Xig oo Xig e Xy g mod S(L_),—1,
wherex;, denotes that this factor is omitted.

Proof. We prove (i) by induction. The cage= 0 is trivial. Now observe that

6 (i 0 (xiy - Kk -+ Xy 1y))
= XjgXig o K Xy + K

= ([xik7 xil]xiz o '),C\ik X + K) + (xilxikxig o '),C\ik CSXing + K)

Since [x;,, x;;] € L4, the first summand lies i®(S(£-),—1) by the hypothesis of
induction, so modul® (S(£-),—1) we can move;, around and place it in the right order.
ThUS,xik o (xjy - ')e,'k .- 'xin+1) = Xig o Xig o Xig g modS(L_),_1andL_ o S(L_), C
S([:_)n+1. Given)\,+ € ‘C+!

O(h+ oxil---xin) =Ayxip X, + K= [)»+,x,'1---x,~n] + K
:inl...[}\’_i_’xij]...xin + K.

Since[)ur,xij] € L_, by the hypothesis of induction we get that each summand lies in
0(S(L-)y), thereforel o S(L_), € S(L-), as desired. Part (ii) has been proved along
theway. O

Observe that the elements, = T, p, = —p, and &, = —i,, p)) = T, satisfy the
relations definingC(M), so inL(M) we have endomorphisngsn with

((ha) =Ty, N(Aa) = —Aq,
$(Pa) = —Pa, n(0a) = Ta,

that turn out to be automorphisms sin¢é = id = n2. These automorphisms are a
generalization of the automorphisms involved in the Principle of Local Triality in the
case ofDg4. In general, they may not be inherited lbyM, [, , ]) since the kernel of the
epimorphism in Proposition 3.1 may not be invariant, so we cannot expect to obtain such
a principle for an arbitrary.(M, [, , ]). The automorphismn¢ sendsk, to —p,, andp,

to —A, and it is the responsible for th&,-gradation onZ(M). The structure ofZ(M)-
module of S(M) can be twisted from any automorphismof £(M) by £(1) o x to get
another modul&(M)e. So, from¢ andn we obtain two extra module( M), andS(M),,.

Proposition 3.4. If there exists a homomorphism
%1 8(M); ® S(M), — S(M)

of L(M)-modules satisfying
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(i) axx=2,0xandx xa=2p, 0x foranyae M, x € S(M),
(i) Lxx=x=xx*1foranyx e S(M),

then Theoren2.1 holds.
Proof. We can think ofx as a product o (M). If that is the case then
ax(xxy)=2h0(x*y)=2(l(ha) ox)*y+2x x (n(ha) 0 y)

=2(T,ox)xy—2x*(Ag0y)

=@xx)xy+(x*xa)xy—xx(@=xy)
and
(xky)xa=2pg0(x*y)=2(¢(pa)ox)xy—+2xx(n(pa)0y)

=—2(pg0x)*xy+2x*(Ty0y)
=xx(yxa)—(x*xa)xy+xx(@xy)

imply that M € Nai((S(M), %)).
Observe that

aiy * @iy + i) = 2hg;) © (aiy -~ ai,) =Ty 0 (aip---a;,) +ady, o (ai,--aj,)
=aj, -+~ aj, +ad, o (ai, - -ai,) =ai; - -aj, MOdS(M),_1.
By iterating this argument we obtain that
iy * (Qip % (- (@i, 4 *a;,) ) =ai - ai, modS(M),_1.
Therefore, we have that the set
{ail * (aiz * ( e (ai,,_j_ * ain) o )) | (i17 D) ln) € Q} (9)
is a basis ofS(M). Now, the homomorphisnt/ (M) — (S(M), =) from the universal
property ofU (M) maps a linear generator sgt; | I € 2} of U(M) onto a basis (9) of
S(M), therefore it is an isomorphism.o
The definition of the product is quite straightforward. We keep the notation=
aj, ---ai, wherel = (iy,...,i,) € 2. Recall that by Lemma 3.3 the elemeft=a; —
2hg; 0ayp lies in S(M);—1 (in particular, if| | = 1 thenr; = 0). We set & x = x, and

assume that we have definegdx x for anya; with |J| < |I]|. Then we define

ay >x<x=2Tal.1o(ap*x)—Zap*(pailox)+r1 * X. (20)
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As an explanation for this formula, observe thatihas to satisfy all the requirements
in Proposition 3.4 them; * x = (2)%.1 oap +ry) xx = (2)%,1 oap) ¥ x +ry xx =
2Ta,1 o(ay *x) — 2ayp * (Pa, ©X) +rp *x. Also note that with this definition;, * x =
2Tai1 ox — 2i0af1 ox = 2)%,1 ox,S0a*xx =2\ *X.

Proposition 3.5. For anyx € £L(M) andx, y € S(M) we have

ko(x*y):(;(k)ox)*y+x*(n(k)oy).

Proof. We will prove thath o (a; x x) = (¢ (M) oay) *x +ay * (n(A) o x) by induction on
[1]. If |I| =0 thena; = 1 and the formula becomeso x = (¢(A) o 1) x x + (L) o x. We
write L asi = D + A, + pp, WhereD is a linear combination of element3, ,, (these
elements are fixed by andn), so thath — n(A) = Azy—p @andZ(A) ol=a — 1/2b. Thus,
(W) olyxx =2hq—1/2p0Xx = hoa—p o x = (A — (X)) o x as desired. For the general case,
we observe that

Ao(ar*x)— (¢(W) oar)*x —ar*(n(h) ox)
2o (274, o (ap % x) — 2ap % (pa, © X) + 17 % X)
—(to (2ha;y 0 ar + rr)) kx — 2Ty, © (ar * (n(x) o x))
+2ap (pailn()\) ox)—rr*(n()ox)
= 2Ty, 0 (ap %) — 200 (a1 % (pay 01)) — 2(¢(Wha, 0ar) %
— 2Ty, o (ar* (W) ox)) + 2ay * (pailn()\) 0x)
=2[A, Ty, 1o (ag 5 x) + 2Ty, d o (ap % x) — 2k o (ag * (pa;, © X))

— 2(;()»))%,1 o al/) * X — 2Tai1 o (a,/ * (r)(k) o x))+2a1/ * (pailn(k) o x)

2 2[k, Ty 10 (ap % x) 4 2Ty Ao (ap % x) — 2(tW)oay) x (Paz, ©X)
—2ap * (n(x),oa,.1 ox)— 2(z;(x)xal.1 oap)*x
— 2Ty, o (ar * (n() 0 x)) + 2ay * (pa, n(A) 0 x)

2 2([c), M,-l] oay)#x 42Ty ho(ap *x) —2(¢(A) o ar) * (pa;, ©x)
—2(£2ay, 0ap) ¥ x = 2T, o (ar * (n(2) o x))

= —z(xailg(x) oap)xx+ 2Ty, o (Ao (ap *x))

— 2((()\) o ap) * (,oal.1 ox)— 2Ta,-1 o (ap * (n(k) ox))
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(%)
=21y, o () oap)*x)— 2()\a,,1 ot oap))xx
= 2(¢@) 0 ar) * (pay, 0 %),
where equality (1) follows from the definitions, equalities (2)—(5) follow by the hypothesis

of induction, and the others by manipulations. This shows that without lost of generality
we can assume that= Ta,0 for somea;,. Moreover, sincer;, x ay = aj, modS(M),—2

with I’ = (i2, ..., i, ..., in) @ndio < - -- <ig < - - - < in, then the equality

Tayy o (ag % x) = (Agzy 0 ag) * x — ay * (pa;y © X)
=Ty, © ((aig *ap) * x) — (kail o (aiy*xap)) *x — (aig * ap) * (Pa;, ©X)

and the hypothesis of induction allow us to assumeithati;. Finally, if ig < i1 then

2(haiy © ar) ¥ x = (a(io,1) = T'(io.1)) * X
= 2Taio o(ayxx) —2ay * ('Oaio 0X) + Flig,1) ¥ X — F(ig,]) ¥ X

= 2Ty, o (ag * x) — 2ay * (pa;, © X),
which proves the proposition.O

Proposition 3.6. For anyx € S(M) anda € M we havethafl«x =xx1=x,axx =
20gox andx xa =2p, 0 x.

Proof. Observe that i, = n(ad,) thens(8,) =84, SO

Sao(x*l—x)z({(8a)ox)*1+x*(adaol)—8aox
=(fgo0x)*x1—3,0x. (12)

Consider nowS = spané,, - - -84, o 1| ay,...,a, € M, n € N). We keep the convention
that if n = 0 thené,, - - - 8,, o 1 = 1. Observe that by Eq. (1X)+« 1 — x =0 for anyx € S.
Therefore, to get the first part of the proposition it suffices to showshat) = S. Since
8g01l=(—2hyg — pg) o1 =—3/2a thenS(M)1 C S. Givena; with I = (i1, ...,i,) then
8a;y 0 ap = (—3/2Ta,.1 — 1/2ad1,.1) oayp = —3/2ay — 1/2ad1,.1 oay, thus by Lemma 3.3
and induction we have that € S. ThereforeS(M) = S.

Finally, psox = pgo(x*1) = (¢(pa)ox)x 1+ x % (n(pg)0l) = —pgox+x*(T,0l)
SOx xa=2p,0x. O

4. Malcev algebrasas primitive elementsin their enveloping algebras
Let C be an algebra with unit 1 over a field and assume that there exists an algebra

homomorphisnd : C — C ® C. An elementp € C is calledprimitive with respect tas
(or simply s-primitive) if §(p) =1 p+p R 1.



390 J.M. Pérez-Izquierdo, I.P. Shestakov / Journal of Algebra 272 (2004) 379-393

If L is a Lie algebra and@ (L) is its universal enveloping algebra, then it is easy to see
that the diagonal mapping

AL LQL  AD=1®I+I®1, lecL,

may be extended to an algebra homomorphisn/of.) to U(L) ® r U(L), which we
will also denote byA. The well-known Friedrichs criterion (see [1]) says thatifhas
characteristic 0 then the set afprimitive elements ot/ (L) coincides withL.

Note that in [11] the Friedrichs criterion was generalized for primitive elements in free
nonassociative algebras.

We will now show that this criterion admits a generalization for Malcev algebras and
their universal enveloping algebras.

Proposition 4.1. Let M be a Malcev algebra ovet andU (M) be its universal enveloping
algebra. Then, the diagonal mapping

AM—> MM, AD=1QI+I®1, leM,
may be extended to an algebra homomorphis#i @) to U(M) ®¢ U(M).

Proof. Evidently, it suffices to prove than(M) C Naw(U(M) ® U(M)). Let m €
M, a,b,c,d e UM), then we have

(A(m),a@b,c@d) =ac® (m,b,d)+ (m,a,c) ® bd

=—ac® (b,m,d)— (a,m,c) ® bd

=—@®b,1®m,cR®d)—(a®b,m®1L, cRd)

= —(a ®b, A(m),c@d).
Similarly, (A(m),a®b,c®d) =(a®b,c®d, A(m)), which proves the proposition.O
Theorem 4.2. Let F be a field of characteristi® and letM be a Malcev algebra oveF.
ThenM coincides with the set af-primitive elements in the universal enveloping algebra
UM).
Proof. Let us rewrite the basis (9) @f (M) in the form

alilalzcz . -afs, ki > 0. (12)

Given an element

ke k k
f= Z Uy iy, kA Ao A Qg kp,ky € F
k1,ko,....ks

then
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AN =fRL+1f+) v Qu,

N
ki k kj—1 k
+Zaj®< Z kjthy k... k:allazz'”aj] eagt )
j=1

kitko+-+ky>1

wherev, is a nonempty word of type (12) and the lengthvpfis more than 1. In case that
f is primitive we must have

N

ki _k kj=1 k
Zaj@)( Z kj oy k... k Ay ay" - a; " eag +Zvr®wr=0.
j=1 r

kitko+-+ky>1

Since the elemenis® v, whereu, v are of type (12), form a base 6f(M) @ p U(M), the
last equality yieldsw, = 0 for all , and

ki k kj—1 k
Z kj Olkl,kg,...,ksallazz . -aj] ceag = 0
ko 4t > 1

foreveryj =1,...,s with k; > 0. Therefore, for every summand jhwith }"; k; > 1, we
havewy, i,,..k, =0,and sof e M. O

.....

5. An extension of Ado—Iwasawa theorem to Malcev algebras

The theorem of Ado—-lwasawa says that any finite-dimensional Lie algebra has a
faithful finite-dimensional representation. For Malcev algebras Filippov [3] proved that
this theorem does not hold. He shows that a free nilpotent Malcev algebra of index 8 on a
set of 6 generators over a unital commutative associative ring contaiférttas no faithful
representations.

For Lie algebras the Poincaré—Birkhoff-Witt Theorem says that any Lie algeiga
a subalgebra oA~ for some unital associative algebra In the case thaL is finite-
dimensional, then the theorem of Ado—Ilwasawa saysAlttn be taken finite-dimensional
too. In the previous sections we have shown that any Malcev algghisaobtained as a
subalgebra ofNgi(A) for some algebrad with the commutator product. In this section
we will use the classical theorem of Ado—Iwasawa to prove that i§ finite-dimensional
thenA can be taken finite-dimensional too.

Lemma 5.1. Let £ be a finite-dimensional Lie algebra, an automorphism of with
o2=id, and L, = {x € L] o(x) = x}. Then, there exists a finite-dimensional module
ande € V such that

Li={xeLl|xe=0}.

Proof. By the Ado-Iwasawa theorent; has a finite-dimensional faithful representa-
tion W. Let{ws, ..., w,} be abasisoW and{f1, ..., f,}its dual. InW @ W* the element
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e=w1® f1+ -+ w, ® f, spans a trivial submodule. However,ih= W ® (W*),, (the
action inW* is twisted byo) we have

n

xe=) xwi® fi+w ®c(x)fi =Y  —wi ®xf; +wi @0 (x) fi

i=1 i=1
=Y wi ® (o(x) —x)fi,
i=1

thereforexe =0 ifand only if (6 (x) —x) f =0 foralli =1, ..., n. SinceW is a faithful
representation this is equivalent to saying th&t L. O

Theorem 5.2. Let M be a finite-dimensional Malcev algebra over a field of characteristic
# 2, 3. Then, there exists a unital finite-dimensional algedrand a monomorphism of
Malcev algebras: M — Nai(A).

Proof. Let £L = L(M) ando = ¢n¢ be the automorphism responsible for #yegradation
L=L, ®L_ of L(M). By the previous lemma, we can choose a finite-dimensignal
moduleV ande € V such thatZ, = {x € £ | xe = 0}. Looking atV as anU (£)-module,
we define the left ideal of finite codimension

I={yeU(L)|ye=0}

which obviously containsk = U(£)L,. I/K is a submodule ofU(L)/K of finite
codimension, sd = #~1(I/K) is a submodule ofs(£_) of finite codimension too.
Identifying S(£_) with U(M) this means thaf C U (M) is invariant by left and right
multiplications by elements o#f, so it is an ideal ofU (M) (see Lemma 4.4 in [7]) of
finite codimension. Moreover, sindé C I and/ N £_ =0 then

OZNM)=INL_+K)/K=UNL_)+K/K=K/K =0,

which proves thatZ N M = 0. Finally, consider the unital finite-dimensional algebra
A=U(M)/I.SinceM NZ =0, then the map: M — Nait(A) induced by.: M — U (M)
is @ monomorphism, as desiredd
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