On the Lie structure of a prime associative superalgebra
-
1
Universidad de La Rioja
info
ISSN: 0021-8693
Argitalpen urtea: 2014
Alea: 404
Orrialdeak: 18-30
Mota: Artikulua
beta Ver similares en nube de resultadosBeste argitalpen batzuk: Journal of Algebra
Lotura duten proiektuak
Laburpena
In this paper some results on the Lie structure of prime superalgebras are discussed. We prove that, with the exception of some special cases, for a prime superalgebra A over a ring of scalars Φ with 1/2 ∈ Φ, if L is a Lie ideal of A and W is a subalgebra of A such that [. W, L] ⊆ W, then either L ⊆ Z or W ⊆ Z. Likewise, if V is a submodule of A and [. V, L] ⊆ V, then either V ⊆ Z or L ⊆ Z or there exists an ideal of A, M, such that 0 ≠ [. M, A] ⊆ V. This work extends to prime superalgebras some results of I.N. Herstein, C. Lanski and S. Montgomery on prime algebras. © 2014 Elsevier Inc.