On the Lie structure of a prime associative superalgebra
-
1
Universidad de La Rioja
info
ISSN: 0021-8693
Any de publicació: 2014
Volum: 404
Pàgines: 18-30
Tipus: Article
beta Ver similares en nube de resultadosAltres publicacions en: Journal of Algebra
Projectes relacionats
Resum
In this paper some results on the Lie structure of prime superalgebras are discussed. We prove that, with the exception of some special cases, for a prime superalgebra A over a ring of scalars Φ with 1/2 ∈ Φ, if L is a Lie ideal of A and W is a subalgebra of A such that [. W, L] ⊆ W, then either L ⊆ Z or W ⊆ Z. Likewise, if V is a submodule of A and [. V, L] ⊆ V, then either V ⊆ Z or L ⊆ Z or there exists an ideal of A, M, such that 0 ≠ [. M, A] ⊆ V. This work extends to prime superalgebras some results of I.N. Herstein, C. Lanski and S. Montgomery on prime algebras. © 2014 Elsevier Inc.