Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter

  1. Nowak, A. 1
  2. Roncal, L. 2
  1. 1 Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland
  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

Journal:
Acta Mathematica Sinica, English Series

ISSN: 1439-8516

Year of publication: 2014

Volume: 30

Issue: 3

Pages: 437-444

Type: Article

Export: RIS
DOI: 10.1007/s10114-014-2512-1 SCOPUS: 2-s2.0-84893574316 WoS: 000330999700006 GOOGLE SCHOLAR lock_openOpen access editor

Metrics

Cited by

  • Scopus Cited by: 7 (12-06-2021)

Journal Citation Reports

  • Year 2014
  • Journal Impact Factor: 0.475
  • Best Quartile: Q3
  • Area: MATHEMATICS Quartile: Q3 Rank in area: 207/312 (Ranking edition: SCIE)
  • Area: MATHEMATICS, APPLIED Quartile: Q4 Rank in area: 216/257 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2014
  • SJR Journal Impact: 0.47
  • Best Quartile: Q2
  • Area: Mathematics (miscellaneous) Quartile: Q2 Rank in area: 179/409
  • Area: Applied Mathematics Quartile: Q3 Rank in area: 268/574

CiteScore

  • Year 2014
  • CiteScore of the Journal : 0.7
  • Area: Mathematics (all) Percentile: 37
  • Area: Applied Mathematics Percentile: 17

Abstract

The heat kernel in the setting of classical Fourier-Bessel expansions is defined by an oscillatory series which cannot be computed explicitly. We prove qualitatively sharp estimates of this kernel. Our method relies on establishing a connection with a situation of expansions based on Jacobi polynomials and then transferring known sharp bounds for the related Jacobi heat kernel. © 2014 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg.