Mean and almost everywhere convergence of Fourier-Neumann series
-
1
Universidad de La Rioja
info
-
2
Universidad de Zaragoza
info
ISSN: 0022-247X
Any de publicació: 1999
Volum: 236
Número: 1
Pàgines: 125-147
Tipus: Article
beta Ver similares en nube de resultadosAltres publicacions en: Journal of Mathematical Analysis and Applications
Resum
Let Jμ denote the Bessel function of order μ. The functions x-α/2-β/2-1/2Jα+β+2n+1(x 1/2), n=0,1,2,..., form an orthogonal system in L2((0,∞),xα+βdx) when α+β-1. In this paper we analyze the range of p, α, and β for which the Fourier series with respect to this system converges in the Lp((0,∞),xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of its properties. Finally, we study the almost everywhere convergence of the Fourier series for functions in such spaces. © 1999 Academic Press.