On sharp heat and subordinated kernel estimates in the Fourier-Bessel setting

  1. Nowak, A. 2
  2. Roncal, L. 1
  1. 1 Universidad de La Rioja

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Instytut Matematyczny, Polska Akademia Nauk, ͆niadeckich 8, Warszawa, Poland
Rocky Mountain Journal of Mathematics

ISSN: 0035-7596

Year of publication: 2014

Volume: 44

Issue: 4

Pages: 1321-1342

Type: Article

DOI: 10.1216/RMJ-2014-44-4-1321 SCOPUS: 2-s2.0-84910622155 WoS: 000344433200015 GOOGLE SCHOLAR
Institutional repository: lock_openOpen access editor


We prove qualitatively sharp heat kernel bounds in the setting of Fourier-Bessel expansions when the associated type parameter ν is half-integer. Moreover, still for half-integer ν , we also obtain sharp estimates of all kernels subordinated to the heat kernel. Analogous estimates for general ν > -1 are conjectured. Some consequences concerning the related heat semigroup maximal operator are discussed.