On sharp heat and subordinated kernel estimates in the Fourier-Bessel setting

  1. Nowak, A. 2
  2. Roncal, L. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  2. 2 Instytut Matematyczny, Polska Akademia Nauk, ͆niadeckich 8, Warszawa, Poland
Journal:
Rocky Mountain Journal of Mathematics

ISSN: 0035-7596

Year of publication: 2014

Volume: 44

Issue: 4

Pages: 1321-1342

Type: Article

Export: RIS
DOI: 10.1216/RMJ-2014-44-4-1321 SCOPUS: 2-s2.0-84910622155 WoS: 000344433200015 GOOGLE SCHOLAR
Institutional repository: lock_openOpen access editor

Metrics

Cited by

  • Scopus Cited by: 4 (12-06-2021)

Journal Citation Reports

  • Year 2014
  • Journal Impact Factor: 0.399
  • Best Quartile: Q4
  • Area: MATHEMATICS Quartile: Q4 Rank in area: 250/312 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2014
  • SJR Journal Impact: 0.611
  • Best Quartile: Q2
  • Area: Mathematics (miscellaneous) Quartile: Q2 Rank in area: 151/409

CiteScore

  • Year 2014
  • CiteScore of the Journal : 1.0
  • Area: Mathematics (all) Percentile: 54

Abstract

We prove qualitatively sharp heat kernel bounds in the setting of Fourier-Bessel expansions when the associated type parameter ν is half-integer. Moreover, still for half-integer ν , we also obtain sharp estimates of all kernels subordinated to the heat kernel. Analogous estimates for general ν > -1 are conjectured. Some consequences concerning the related heat semigroup maximal operator are discussed.