A new semilocal convergence theorem for Newton's method
-
1
Universidad de La Rioja
info
ISSN: 0377-0427
Año de publicación: 1997
Volumen: 79
Número: 1
Páginas: 131-145
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Journal of Computational and Applied Mathematics
Resumen
A new semilocal convergence theorem for Newton's method is established for solving a nonlinear equation F(x)=0, defined in Banach spaces. It is assumed that the operator F is twice Fréchet differentiable, and F″ satisfies a Lipschitz type condition. Results on uniqueness of solution and error estimates are also given. Finally, these results are compared with those that use Kantorovich conditions.