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Abstract 

A new semilocal convergence theorem for Newton’s method is established for solving a nonlinear equation F(x) = 0, 
defined in Banach spaces. It is assumed that the operator F is twice Frechet differentiable, and F” satisfies a Lipschitz 
type condition. Results on uniqueness of solution and error estimates are also given. Finally, these results are compared 
with those that use Kantorovich conditions. 
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1. Introduction 

Let X, Y be Banach spaces and F : C2 CX + Y be a nonlinear twice Frechet differentiable operator 
in an open convex domain sZO 2 52. Let us assume that F’(x~)-~ E 9( Y,X) exists at some x0 E GO,, 
where 9( Y,X) is the set of bounded linear operators from Y into X. 

Newton’s method for solving the equation 

F(x) = 0 (1.1) 

is defined, starting from x0, as follows: 

X,+1 =xn - F’(x,)-‘F(xn), Iz 2 0, 

provided that F’(x,,)-1 E P’(Y,X) exists at each step. 

(1.2) 
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Most of the authors study the convergence of the sequence ( 1.2) towards a solution of (1.1) under 
the conditions of the Kantorovich theorem [&8], or closely related ones [9, 11, 131. In these results 
it is assumed that the second Frechet derivative F” is continuous and bounded in 00, or the weaker 
assumption of the Lipschitz continuity of F’ in sZO. 

Huang [5] has recently obtained a new convergence theorem for Newton’s method, assuming that 
F” satisfies a Lipschitz type condition. This new result is an alternative to Newton-Kantorovich 
theorem and it can be used in situations where this theorem fails, as we see in some examples. 
When both theorem fulfill, we compare them in order to obtain the best results on existence and 
uniqueness of solution for (1 .I ). 

In this paper we assume that F satisfies the condition 

I(F’(xo)-‘(F”(x) - F”(xo))ll <k/lx -x011, x E s2,. (1.3) 

We introduce the linear operator LF(x) : X -X, formally defined by 

LF(x) = F’(x)-’ F”(x)F’(x)-’ F(x). (1.4) 

This operator and its properties were studied in [3]. Notice that in the scalar case, if f is a convex 
function, Lr(t) is a punctual measure of the convexity of f, called degree of logarithmic convexity 
(see [4]) and is defined as follows: 

Lf(t) = fw”“W 
“f-w2 * 

Assuming (1.3), and using the linear operator &(x), we give a convergence theorem for Newton’s 
method, in the same way as for Huang’s result. We obtain a cubic polynomial which majorizes F 
and we establish results on convergence and error estimates for (1.2), as well as uniqueness of the 
solution for (1.1). 

Next, we extend these results to another situation which includes, as particular cases, condition 
(1.3) or the hypothesis of Holder continuity for F” (see [ 11). 

2. Main results 

One of the techniques to prove the convergence of a sequence {zn} in a Banach space is the use 
of a majorizing sequence [ 121, i.e., a real nonnegative sequence {sn} which satisfies 

llzn+1 - Gil G&t+1 - %I, na0. 

Note that the convergence of {s,} implies the convergence of {z~}. 
In this paper, we present a new method for finding majorizing sequences for Newton’s method, 

by using the linear operator LF(x) and its connection with this method. We can write the sequence 
(1.2) in the form x,+~ = G(x,), where 

G(x) = x - F’(x)-’ F(x). (2.1) 

If G is a differentiable operator at x, it was shown [3] that G’(x) =&(x). By applying [8, Theorem 
XVIII.1. l] we obtain the next result. 
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Lemma 2.1. With the previous notations, let us assume that a real function f satisfies 
(0 IIF’(‘F(x0)ll G-f (t0)lf’(t& 

(ii) llMx)ll dLf(t), for IIx -x011 Gt - to. 
Then, the Newton sequence 

t n+l = tn - f (tn)lf’(tn), 

starting at to, is a majorizing sequence of (1.2), i.e., 

11x,+1 -x,II d&+1 - tn, n>O. 

In what follows, we write &, =F’(x,)-‘, and assume that F satisfies (1.3) and, besides, 

IIGWO)II <a, 

IIW”‘(xo)II bb. 

(2.2) 

(2.3) 

Let us denote 

B(xo;r)={x EX; 11x-x011 -a”} 

and 

B(xo;r)= {x EX; IIx-xollGr}. 

Consider the cubic polynomial defined by 

p(t) = a - t + it2 + %t3, (2.4) 

where k, a and b are given as above. Next, we obtain a result on the existence of the linear operator 
&(x) and some properties of the polynomial p(t). 

Lemma 2.2. Let 

2 

m=b+@?%* 

Then, the linear operator LF(x) is well dejined for x E B(xo; m) and satisfies 

(2.5) 

(b + kllx - xoll>Ilr,W)ll 
‘lLdx” ’ [l - ;kllx - xol12 - bllx - xo\l12’ 

Proof. Notice that 

I 
X r,[F”(y) - F”(xo)] dv = GF’(x) - I - &F”(xo)(x - x0). 

X0 

Therefore, from (1.3) it is deduced that 



134 J.&f. GutiPrrezl Journal of Computational and Applied Mathematics 79 (1997) 131-145 

Fig. 1. Polynomial defined in (2.4). 

So, if x E &x0; m), we have 

)]W’(x> -I)) d ;kJJx - x,J2 + bllx - XO]] < 1. 

Then, by Banach’s theorem on existence of inverse operators (see [S]), the operator T,F’(x) has 
a continous inverse in B(xo; m), and 

]][GF’(x)l-‘II ’ 1 _ (#lx _ xof]2 + b]lx _ xo]])’ 

Taking into account (1.3) and (2.3), we obtain 

IlM”‘(x)ll Gb + kllx -x01], 

and so, the result follows from (1.4). 0 

Notice that the polynomial p(t) has a maximum at 

t=M= - 
b+dm<O 

k 
9 

and a minimum at t = m > 0, where m is given by (2.5) (see Fig. 1). A necessary and sufficient 
condition for p to have positive roots is 

p(m) = P 
2 

b+&%% > 
GO. (2.6) 

Each one of the following conditions are equivalent to (2.6): 

6ab3 + 9a2k2 + 18abk < 3b2 + 8k 
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or 

3ak2 + 3bk + b3 < [b2 + 2k1312. (2.7) 

Theorem 2.3. Let F be the operator defined in (1.1) satisfying (1.3), (2.2) and (2.3). Let p be 
the polynomial defined in (2.4). Assume that B(xo; m) C Qo. If (2.6) holds, then p has two positive 
roots, rl, r2 (r, <r2) and the sequence {x,,} defined by (1.2) converges to x*, solution of (1.1) in 
B(xO; rl). If rl < r2 the solution is unique in B(xo; r-2). If r1 = r2 the solution is unique in B(xo; r-1). 

Proof. Under the previous assumptions we prove that 

/Ix,+1 -x,II <&+I - t,, n>,O 

where { tn} is the Newton sequence to solve p(t) = 0, starting at to = 0. 

x2 

First notice that x1 is defined and besides _ 

11x1 - ~011 = IIC#‘(XO)II da= tl - to -c rl <m. 

So, x1 E B(xo; m) and because of Lemma 2.2, the linear operator L&c,) exists. Then, we can define 
by means of 

s 

XI 
x2 -x1 = &(x) dx. (2.8) 

x0 

For x E [x0,x1], we have x=x0 + s(xI - x0), where 0 fs < 1. By Taylor’s formula [l 11, 

I,,F(x) = &F(xo) + (x - x0) + $F”(xo)(x - xo)2 

s 

x 
+ W”‘(Y) - F”(xo>I(x - y>dy. 

x0 
As x-xo=s(xI -x0)= -sT,F(xo), then 

IIP’(x)]( G (1 - ~)IlrOF(~o)ll + ~IIGF”(~o)llI~(~ -~o>~ll 

IV 
x 

+ W”(Y) - F”(xo)I(x - y)dy . 
x0 II 

Taking into account (1.3) (2.2) and writing sa = t, we obtain 

IIW(x)l( <(l - s)a + @ s2a2 + ika3s3 = a - t + ibt2 + ikt’ = p(t). 

From Lemma 2.2 we deduce 

llL&>ll d 
(b + kt)(a - t + ibt2 + ikt3) 

[l - ;kt’ - bt12 
=L (t) 

P ’ 

and, by (2.8), 

(2.9) 



136 J.M. Gutitkezl Journal of Computational and Applied Mathematics 79 (1997) 131-145 

Using similar arguments, one can show that 

11x3 - XZII <t3 - t2, 

and so on. 
The convergence of {tn} [9] implies that {xn} is a Cauchy sequence and therefore converges to a 

limit x*. From (2.9) and the continuity of F, we have F(x*) = 0. 
Finally, to prove the uniqueness, suppose y1 < r2 and 2 is another solution of (1.1) in B(xO; r2). 

Then, 

11% - %I1 dP(Y2 - to), with 0 < p < 1. 

Following Huang’s technique [5], it can be shown that 

]]Z-&II dp2”(r2 - t,), nao. 

If rl = r2, and X E B(xo; rl), we have 

IIZ-xnII,<rl - tn, n>O. 

In both cases, 11% - x,1] + 0 when n + 00, and therefore X=x*. Cl 

Ostrowski [9] obtained an error expression for Newton’s method applied to a quadratic polynomial, 
in terms of the polynomial roots. Using a similar technique, we establish the following result for 
the cubic polynomial (2.4). 

Theorem 2.4. Let p be the polynomial de$ned in (2.4), with a negative root, -ro, and two positive 
roots, r1 <r2. Then, the Newton sequence 

t P(tn) 
nil =&I - - 

P’W 
to = 0, (2.10) 

converges to rl. Moreover, if rl < r2, we have for n>O 

lX2” 
(r2 - rl)- 

Q2” 
r - ci2’ drl - hd(r2 - rl)~, 

where 

O<r=S<l, O<R=l-r2.<<, 
r0 - rl r0 + 71 

0 < a=r? < 1, 0 < tl=Rc < 1. 
r2 

If rl = r2, then 

rl [~~o~r~J 
n 

<rl - tn<c 
1 2”’ 

Proof. Notice that p is a decreasing, convex function in [0, m], p(0) > 0 2 p(m), and rl <m. Then, 
it is well known [9] that Newton sequence (2.10) converges to rl. Moreover, {tn} is an increasing 
sequence. 
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To obtain the error expression, we can write the polynomial (2.4) in the form 

p(t) = $(r, - t)(Yz - t)(G) + t) 

Comparing the polynomial coefficients of t2, we have rl + r2 dro. We also have 

p’(t) = - $[(r2 - t)(r0 + t) + (r-1 - t)(ro + t) - (r-1 - t)(r2 - t)]. 

Let us denote a,=rl -t,,, b,=r2-t, and c,=ro+t,. Then, by (2.10) 

a P(G > 
n+l = rl - tn+l = rl - tn + - 

P’(b > 
anbncn 

= a’ - b,c, + a,c, - anbn = 
4&n - bn) 

b,c, + a,c,, - anbn’ 

In a similar way, we obtain 

bn+i = 
b:(cn - a,) 

b,c, + a,c, - a, b, * 

So, we have 

a,+1 a, 2 c, - b, _= - 
b II+1 ( ) bn c, - a,’ 

Notice that 

c,,-b,, (ro-r2)+2t,, ----I= 
c, - a, (r0 - rl ) + 2t, 

and 

r _ Q - r2 d (r0 - f-2) + % < r0 - r2 + 2rl = R \ 
r0 - rl (r0 - rl ) + 2t, r0 + r1 

That means that 
2 4 

zg *** &‘+‘-1 (;)“+I = f @:)2n+’ . 

Taking into account that b, = r2 - r-1 + a,, it follows that 

a, 1 - !ig &32”, ( i 
and 

e2’ 
r1 - tn < (r2 - rl)------- 

R _ 92” ’ 

For the lower estimate, we obtain from (2.11) 

(2.11) 
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Therefore 

and hence 

a2” 
(72 - r1>------ r - u2” 

<r, - tn. 

Finally, if y1 = r2, then 

c, - a, 
an+1 = an 2c, _ a,. 

Since 

ro - r1 
-< 

c, - a, 
2ro-rl 

<’ 
2c,-a, 2’ 

we obtain the result. ??

We extend the result obtained in the Theorem 2.3 to a more general situation. Assume, instead 
of (1.3), that F satisfies 

]]G[F”(n) - F”(xo)lll <k]]x -xo]lp, k > 0, ~30, x E Qo. (2.12) 

Observe that for p = 0, we have Il&F”(x)ll <k + 11 &F”(xo)ll = k’, and we are in the situation of 
the Kantorovich theorem [8, Theorem XVIII. 1.61. When p = 1, we have (1.3). If p E (0, l), it is 
said that F” is Holder continous on Go. 

In any case, and following the proof of the Theorem 2.3, we obtain a majorizing sequence for 
(1.2), by using Newton’s method for the real equation f(t) = 0, where 

f(t) = a - t + it2 + (p + l:(, + 2)tp+2, tao, (2.13) 

with k, a and b as before. 
Note. The equation f’(t) = 0 has only one positive solution. This we call m. Moreover, m is a 
minimum of f. Therefore, f(m) < 0 is a necessary and sufficient condition for the existence of 
positive solutions of f(t) = 0. Let us denote these solutions r1 and r2 (rl <r2). So, we can write 

f(t) = (rl - tXr2 - f>s(t> with g(rl) # 0 # g(r2). (2.14) 

Observe that f is a decreasing, convex function in [0, m], and f (0) > 0 2 f(m). These conditions 
are sufficient for the convergence of the sequence 

t n+l 
= tn - f(tn> 

f'(tn)' 
to = 0, (2.15) 

to rl. Moreover, {t,,} is an increasing sequence. 
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Repeating the proofs of Lemma 2.2 and Theorem 2.3, we obtain the next results. 

Lemma 2.5. Let m be the minimum of the function f given by (2.13). Then, the linear operator 
_&r(x) is defined for x E B(xO; m) and 

(b + kllx - xo(Ip)llGF(x)ll 
llLdx)” ’ [I - k/(p + 1)11x - x~IIP+~ - bllx - ~0111~’ 

Theorem 2.6. Let F be as in Theorem 2.3, with (2.12) instead of (1.3). Suppose that f is given 
by (2.13) and has two positive roots. Then, the Newton sequence (1.2) converges to a solution 
x* of (1.1) in B(x,,; r1 ), where r1 is the smallest root of (2.13). Besides, the solution is unique in 
B(xo; r2), where r2 # r1 is the another root of (2.13). If r1 = r2 the solution is unique in B(xo; r-1). 

Next, we obtain error estimates for the sequence (2.15), when f is given by (2.13). 

Theorem 2.7. The sequence {t,,} defined in (2.15) is an increasing convergent sequence to r1. 
Moreover, if r1 c r2, we have 

where 

r = rgjn,H(t)l R = m;;lH(t), 8 = R;, azr-2 
,I r2 ’ 

H(t) = g(t) - G-2 - W(t) 

g(t) - (r1 - W(t)’ 

If r1 = r2, we have 

Prl <rl -t, dI?rl, 

where 

r?(t) = 
s(t) - b-1 - W(t) 
Q(t) - (f-1 - t)s’(t)’ 

Proof. We have already stated that {tn} is an increasing convergent sequence to rl. Taking into 
account (2.14), 

f’(t) = -(r2 - tMt> - (rl - tMt> + (rl - t)(r2 - t>s’(t>. 

Let a, = r1 - t,,, b, = r2 - t,. Following the proof of Theorem 2.4, we have 

a,+l = a2bnd(t,) - dtn > 
n 

f’(tn) ’ 

b b2 w’(tn> - dtd 
n+1= n 

f’(tn) . 
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and therefore, 

1 2” 
- 
r 

Taking into account that b, = r2 - rl + a,, 
If rl = r2, then 

the first part follows. 

a,+1 = n - &+I = a, 
d&l ) - 4d?‘(4l) 
W&l) - w’(tn>’ 

and the second part also holds. •I 

3. Illustrative examples and concluding remarks 

We have studied the Newton sequence (1.2) under different assumptions from those of the 
Kantorovich theorem. Now, we analyze both conditions in two different ways: accessibility of solu- 
tion and results on existence and uniqueness of solution. 

The Kantorovich theorem assumes that F satisfies 

IIF’(‘(F’(x) - F'(r)>11 -11~ - ~11, X,Y E no, (3.1) 

and UC < i, where a is given by (2.2). Notice that (3.1) is slightly weaker than the original 
Kantorovich assumption (see [8, 131). 

In regard to the accessibility of solution, Theorem 2.3 and the Kantorovich theorem are not 
comparable. The following examples show situations where the Kantorovich assumptions fail and 
the Theorem 2.3 fulfills or vice versa. 

Example 3.1 (hang [5]). Let X = [-1, 11, Y = If& x0 = 0 and f :X --+ Y the polynomial 

f(x) = ix’ + $2 - ix + +. 
In this case, c = ! and a = !. Then ac = 16/25 > i. Therefore, Kantorovich condition fails and 

we cannot guarantee the convergence of the Newton sequence starting from x0. 
However, under the assumptions of the Theorem 2.3, and with the same notation, we have a = $, 

b=! andk=$.Then, 

(b2 + 2k)3’2 = 
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Fig. 2. Location of the roots of p and q, 

Therefore, condition (2.7) holds, and consequently f satisfies the hypothesis of the Theorem 2.3. 
Hence, the Newton’s sequence converges starting from x0. 

Example 3.2. Let X = Y = R, x0 = 0 and f :X --t Y the function 

f(x) = sinx - 5x - 8. 

In this case, a = 2, b = 0 and c = k = i. Then UC = 5 and the hypothesis of the Kantorovich 
theorem holds. However, the polynomial (2.4) appearing in the Theorem 2.3, 

p(t) = $3 + qt2 - t + a = $3 - t + 2, 

has not got positive roots. Consequently, we cannot use the Theorem 2.3 in order to prove 
convergence of the Newton’s sequence converges starting from x0. 

the 

Sometimes, the convergence of (1.2) can be established using the Kantorovich theorem or the 
Theorem 2.3 indistinctly. Then we wonder which result gives us more accurate information on the 
solutions of (1.1). Under the assumptions of the Theorem 2.3 we locate the solutions of ( 1 .l ) 
in terms of the roots of the polynomial (2.4) (error estimates are given in Theorem 2.4). Under 
Kantorovich assumptions the information is obtained from the quadratic polynomial 

q(t) = ;ct2 - t + a. 

Let us denote by P1, P2 (;‘1 <Pz) the roots of q. Then 

p(c) = ;%2 (fk? - (c - b)) , j = 1,2. 

Observe that 

(3.2) 

p(P,)dO @ k(1 - vi?%)d3c(c - b), 

p(P2)d0 % k(1 + vi=?%)d3c(c - b). 

Our goal now is to get the smallest region where the solution is located and the biggest one where 
this solution is unique. We distinguish three situations (see Fig. 2): 

Case 1: k(1 + vi?%)<3c(c - b). Then rl <PI, & <r2 and, consequently, the solution x* is 
located in B(xo; rl) and is unique in B(xo; r2). 

Case 2: k( 1 - vn) < 3c(c - b) < k( 1 + vi??%). In this situation y1 <PI, r2 <S. Then 
the solution x* belongs to B(xo; rl ) and is the only one in B(xo; 72). 
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Case 3: 3c(c - b) < k( 1 - dm). Now we have Pi d rl, P-Z d i$;, thus x* is located in B(xo; Pi ) 
and is unique in B(xo; Pz). 

In the cases 1 and 3 we get the best information from Theorem 2.3 and the Kantorovich theorem 
respectively. But in the case 2, the best information is obtained by mixing both results. 

Example 3.3. Let X = [0, l] x [0, 11, Y = R2, (x0, yO) = (0,O) and F : X + Y given by 

F(x,Y) = ; 

We consider the 
calculation scheme: 

2 
1 Y3 +$-x+I.8+7-3y+l 

max-norm in R2. For a bilinear operator B on X defined by the following 

B(x, y)=(-P,x2) 

b;'x, + bf'x2 b;2x1 + by2x2 Yl 
ZZ 

@‘xl + b;‘xz bFxl + bpx2 )( ) y2 

b;‘x, yl + b:‘xz y, + bi2x1 y2 + bf2x2 y2 = 
( b:‘xl y1 + b;‘xz yl + bFxl y2 + bfx2 y2 ’ 

x=b,x2)EX, y=(y1,y2)EX, 

we consider the norm (see [2, lo]) 

Then 

&F(O,O)= (,’ :;) (I) = (+); 
and IIToF(O,O)II = i = a. 

On the other hand, if we compose a linear operator in R2 

L= 

with B we obtain a new bilinear operator, whose associated matrix is 

i 

allb!’ + a12b11 allb;2 + a12bi 

LB = 
allbf’ + a,,bi’ allby + a12b;2 

a,,b:’ + a22b:’ a21bi2 + a22b12 
azlb:’ + a22b;’ a21by + a22bz2 
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As a particular case 

and JJT,F”(O,O))) = i = b. Besides, 

x/4 0 

T,v%Y) - w40)1= (y)l “J 
i i 

“, “, 
0 3Yl4 

and I]&,[F”(x, y) - F”(O,O)](( <iI](x, y)]]. Hence k = $. 
The polynomial given by (2.4) is 

p(t) = ; - t + $2 + $3. 

This polynomial has positive roots and therefore the Theorem 2.3 holds. 
We also have 

/-x/4 0 

T,F”(X, y) = I 0 -l/2 
-l/2 0 

0 -Y/4 

and then, 

IlW”(X, Y)ll G ; = c, yx, y) E x = [O, l] x [O, 11. 

So, we obtain UC = i < i, and Kantorovich theorem also holds. In this situation, the polynomial 
(3.2) is 

q(t) = $2 - t + f. 

Since 

1+& 
k(l+di=%)=- 

9 
< 3c(c -b) = E’ 

as in the case 1, we obtain better information from the polynomial (2.4). Actually, we know that the 
solution is located in B(0; rl) = B(0; 0.3695) and is the only one in B(0; r2) = B(0; 2.4533) instead 
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Table 1 
Error comparisons 

Iteration ri - tn ri -sn 

0 0.3695850618081907 0.3905242917512699 
1 0.0362517284748574 0.1067190958417936 
2 0.0004701842187366 0.0163540286238108 
3 0.0000000820038027 0.0000014159342765 
4 0.0000000000000025 0.00000000000 10632 

of the regions obtained from the quadratic polynomial: B(O; = B(0; 0.3905) and B(0; 72) = 
B(0; 2.2761). 

Finally, we compare the error bounds we get from p and q. Let us denote (x*, y*) the solution 
of F(x, v) = 0, and {xn} the Newton sequence 

(Xn+l,Yn+l) = cGl,Yn> - ~‘(&,.YJ1mn,_Yn), (Xo,Yo) = (O,O). 

Let yI and ?r be the smallest positive roots of p(t) = 0 and q(t) = 0 respectively; {tn} and {sn} 
the Newton sequences 

t d&l > 
n+l =+w, - 

I 
so = to = 0. 

n 
Sri+++ = sn - q,(s,), 

We know that 

Il(x”,v”) - (Xn,Yn)ll Gr, - &I 

and 

II@*, y*> - CL Yn)ll G6 - Sri. 

Both error estimates are compared 
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