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Abstract

A new semilocal convergence theorem for Newton’s method is established for solving a nonlinear equation F(x)=0,
defined in Banach spaces. It is assumed that the operator F is twice Fréchet differentiable, and F’ satisfies a Lipschitz
type condition. Results on uniqueness of solution and error estimates are also given. Finally, these results are compared
with those that use Kantorovich conditions.
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1. Introduction

Let X, Y be Banach spaces and F: Q C X — Y be a nonlinear twice Fréchet differentiable operator
in an open convex domain Q) C Q. Let us assume that F'(xy)™! € L(¥,X) exists at some x; € €,
where £(Y,X) is the set of bounded linear operators from Y into X.

Newton’s method for solving the equation

F(x)=0 (1.1)
is defined, starting from x,, as follows:
Xass =% — F'(%)'F(x), n20, (12)

provided that F'(x,)~' € £(Y,X) exists at each step.
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Most of the authors study the convergence of the sequence (1.2) towards a solution of (1.1) under
the conditions of the Kantorovich theorem [6-8], or closely related ones [9, 11, 13]. In these results
it is assumed that the second Fréchet derivative F” is continuous and bounded in ,, or the weaker
assumption of the Lipschitz continuity of F’ in Q.

Huang [5] has recently obtained a new convergence theorem for Newton’s method, assuming that
F" satisfies a Lipschitz type condition. This new result is an alternative to Newton—Kantorovich
theorem and it can be used in situations where this theorem fails, as we see in some examples.
When both theorem fulfill, we compare them in order to obtain the best results on existence and
uniqueness of solution for (1.1).

In this paper we assume that F satisfies the condition

[F(xo) ™ (F"(x) = F"(xo))|| <k = x0l,  x € Qo. (1.3)
We introduce the linear operator Ly(x) : X — X, formally defined by
Le(x)=F'(x)"'F"(x)F'(x)"'F(x). (1.4)

This operator and its properties were studied in [3]. Notice that in the scalar case, if f is a convex
function, Ls(¢) is a punctual measure of the convexity of f, called degree of logarithmic convexity
(see [4]) and is defined as follows:
1
L= {00
J'(@)
Assuming (1.3), and using the linear operator Lr(x), we give a convergence theorem for Newton’s
method, in the same way as for Huang’s result. We obtain a cubic polynomial which majorizes F
and we establish results on convergence and error estimates for (1.2), as well as uniqueness of the
solution for (1.1).
Next, we extend these results to another situation which includes, as particular cases, condition
(1.3) or the hypothesis of Holder continuity for F” (see [1]).

2. Main results
One of the techniques to prove the convergence of a sequence {z,} in a Banach space is the use
of a majorizing sequence [12], i.e., a real nonnegative sequence {s,} which satisfies
Hzn+1 _Zn||<sn+1 — S n>0

Note that the convergence of {s,} implies the convergence of {z,}.

In this paper, we present a new method for finding majorizing sequences for Newton’s method,
by using the linear operator Lr(x) and its connection with this method. We can write the sequence
(1.2) in the form x,.; = G(x,), where

Gx)=x—F'(x)"'F(x). 2.1

If G is a differentiable operator at x, it was shown [3] that G'(x) = Lg(x). By applying [8, Theorem
XVHI.1.1] we obtain the next result.
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Lemma 2.1. With the previous notations, let us assume that a real function f satisfies
(i) [F"Co) " FGxo) | <= £ (1)) f (1),
(ii) [LrCe)| SLyo), for b —xoll <t — to.

Then, the Newton sequence

trsr = tn = [t/ (1),
starting at ty, is a majorizing sequence of (1.2), ie.,
%241 = Xal| Stas1 — s, 1 20.
In what follows, we write Iy=F'(x,)~!, and assume that F satisfies (1.3) and, besides,
| I6F (x0)|| <a, (2.2)
I F"(x0)|| <b. (2.3)
Let us denote
B(xo;r)={x € X; ||x —xl|| <r}
and
B(xo;r)= {x € X; |lx — xo|| <r}.

Consider the cubic polynomial defined by
b k
p()=a—t+ =t* + -2, (2.4)
2 6 '
where k, a and b are given as above. Next, we obtain a result on the existence of the linear operator
Lr(x) and some properties of the polynomial p(¢).
Lemma 2.2. Let
2
m=————_.
b+ Vb*+ 2k
Then, the linear operator Lp(x) is well defined for x € B(xo; m) and satisfies

(b + kllx — xo|DIHF ()|
[1 = 3kllx = xo|* — bllx — x>

(2.5)

[PEIIES

Proof. Notice that
/ LIF"(y) — F"(xo) dy = LF'(x) — I — LF"(x0)(x — xo).

Therefore, from (1.3) it is deduced that



134 J. M. Gutiérrez/Journal of Computational and Applied Mathematics 79 (1997) 131-145

Fig. 1. Polynomial defined in (2.4).

| IoF'(x) — I — IF" (o )(x — Xo0)|| =

[ BE ) - P
< k||x ‘x0||2.
2
So, if x € B(xg; m), we have
| LF (x) —1I|| < %k”x — xol* + bjx — x| < 1.

Then, by Banach’s theorem on existence of inverse operators (see [8]), the operator IoF’'(x) has
a continous inverse in B(x,;m), and
1
1 — (3kllx = xol[? + bllx — xol)

IBF )17 <

Taking into account (1.3) and (2.3), we obtain
I1F" ()| <b + kllx — xoll,
and so, the result follows from (1.4). O

Notice that the polynomial p(¢) has a maximum at
b+ vb* +2k
— <0,
k
and a minimum at t=m >0, where m is given by (2.5) (see Fig. 1). A necessary and sufficient
condition for p to have positive roots is

t=M= —

2
rm= () <° -

Each one of the following conditions are equivalent to (2.6):

6ab® + 9a*k* + 18abk <3b* + 8k
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or

3ak® + 3bk + b> <[b* + 2k]7. (2.7)

Theorem 2.3. Let F be the operator defined in (1.1) satisfying (1.3), (2.2) and (2.3). Let p be
the polynomial defined in (2.4). Assume that B(xo;m) C Qo. If (2.6) holds, then p has two positive
roots, ri, ry (r1 <ry) and the sequence {x,} defined by (1.2) converges to x*, solution of (1.1) in
B(xo; 7). If r| <r, the solution is unique in B(xo;r,). If ry =r, the solution is unique in B(xo;r|).

Proof. Under the previous assumptions we prove that
Hxn+1 _xn||<tn+1 — Iy, n>0

where {1,} is the Newton sequence to solve p(¢)=0, starting at #, = 0.
First notice that x, is defined and besides

Ix) — xoll = | bF (x0)|| Sa=t — ty <r, <m.

So, x; € B(xy; m) and because of Lemma 2.2, the linear operator Lz(x,) exists. Then, we can define
X, by means of

X —x = / " Le(r)dx. (2.8)
For x € [xg,x;], we have x =x; + s(x; — xo), where 0<s< 1. By Taylor’s formula [11],
LF(x) = LF(x0) + (x — Xo) + 3 oF"(x0)(x — x0)*
+ [ BIF') = Pl - »)dy
As x —xg=s(x; —x9) = — sI[HF(xp), then
IF G| < (1 = ) BF o)l + 31T6F" (xo) || (x — x0)?|

| [ F o) - e - N

Taking into account (1.3), (2.2), and writing sa =¢, we obtain
IGF()| <1 — s)a+ 3bs’a® + tha’s’ =a — t + b + Lk = p(2). (2.9)
From Lemma 2.2 we deduce

(b+kt)a—t+ b + Lkt)

L < =L,(1),
” F(x)H [1 — %ktz IR bt]7— P( )
and, by (2.8),
X 3|
||JC2 —X1H = / Lp(X)d)C” < / Lp(t)dt=t2 - 1.
X0 1)
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Using similar arguments, one can show that
s — x|l <t — 1,

and so on.

The convergence of {z,} [9] implies that {x,} is a Cauchy sequence and therefore converges to a
limit x*. From (2.9) and the continuity of F, we have F(x*)=0.

Finally, to prove the uniqueness, suppose »; <r, and x is another solution of (1.1) in B(xy; 7).
Then,

X — xol| <p(r2 — ), with 0 < p < 1.
Following Huang’s technique [5], it can be shown that
% — x| <p¥'(r2 — 1), n>0.
If r,=ry, and X € B(xy; 1), we have
IX —xq|| <ri —t,, n=0.
In both cases, || — x,|| — 0 when n— oo, and therefore X=x*. O
Ostrowski [9] obtained an error expression for Newton’s method applied to a quadratic polynomial,

in terms of the polynomial roots. Using a similar technique, we establish the following result for
the cubic polynomial (2.4).

Theorem 2.4. Let p be the polynomial defined in (2.4), with a negative root, —r,, and two positive
roots, vy <r,. Then, the Newton sequence

p(t)
tip1=t, — ——-, =0 (2.10)
n n p,(tn) b
converges to ri. Moreover, if r| < r,, we have for n=0
b 2"
(r2 — Vl)r — <n—6<(n — rl)R___Gz,,,
where
ro— 7 rh—r
0<r=—2 <1, 0<R=1-2"1<]1,
Fo— 1 Ko+ 1

O<a=rr~1<1, O<0:Rﬂ<1.

r r
If r\=r,, then
n
Yo— N r
) <r -f<—.
(2r0—r1) ST IS o

Proof. Notice that p is a decreasing, convex function in [0,m], p(0) > 0> p(m), and r; <m. Then,
it is well known [9] that Newton sequence (2.10) converges to r,. Moreover, {t,} is an increasing
sequence.
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To obtain the error expression, we can write the polynomial (2.4) in the form

p(t)= %k(rl = t)(r2 — t)(ry + t).

Comparing the polynomial coefficients of 2, we have r; + r, <r,. We also have
paring y

P()= = gkl(ra = t)(ro + 1) + (r1 — t)(ro + 1) — (11 — £)(r, — 1)].
Let us denote a,=r) —t,, b,=r, —t, and ¢, =ry + t,. Then, by (2.10)
P(t)
P'(t)
_ anbncn _ a?g(cn - bn)
bucy + ayc, — a,b, B buc, + ac, — a,b, '

Auy1 =¥ — by =r — 4, +

=a,

In a similar way, we obtain

bfl(cn - an)
b.c, + ayc, — ayb,’

bn+1 -

So, we have

Ap _ (Eﬂ)z cn_bn
bn+] bn Ch — Qy
Notice that

Cn_bn_(rO“r2)+2tn
cn—an—(ro_rl)+2tn

and
__ro—r2<(r0—r2)+2t,,<r0—r2+2r1
ro—rl\(ro—r1)+2t,,\ ro+ r

That means that

r

2 4 o+l
Qny a, 3 [ Any i_y [ Qo 1 ( rl)
<KR|—) <R |—) <--- <R — =~ | R—
bn+1 (bn> (bn—l) = (bo) R r

Taking into account that b, =r, — r, + a,, it follows that

a (1 - _9_2_> <u92"

R R

6%
R—-6¥
For the lower estimate, we obtain from (2.11)

r —t,,s(rz—rl)

2n+l

2] a 2 Ay 4 +1 ap AN 1 r
bnt1 by by bo r\n

2n+1

137

(2.11)
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Therefore

and hence
a’
(r2 — "1)’,—:“2—,. < — b

Finally, if | = r,, then

ch — a,
Any1 = an2 .
Cp — Qy
Since
Fo— 1 Cn — ay 1
~ < N
20— 2¢,—a, 2

we obtain the result. O

We extend the result obtained in the Theorem 2.3 to a more general situation. Assume, instead
of (1.3), that F satisfies

I1[F"(x) = F"(xo)]l| <kllx — xol”, & >0, p=0, x € Q. (2.12)

Observe that for p = 0, we have ||[LF"(x)|| <k + ||IoF"(x)|| = &', and we are in the situation of
the Kantorovich theorem {8, Theorem XVIIL.1.6]. When p = 1, we have (1.3). If p € (0,1), it is
said that F” is Holder continous on €.

In any case, and following the proof of the Theorem 2.3, we obtain a majorizing sequence for
(1.2), by using Newton’s method for the real equation f(¢) = 0, where

k

— P2 120, (2.13)
(p+1D(p+2)

b
JWy=a=t+36+ ,
with &k, a and b as before.

Note. The equation f'(#)=0 has only one positive solution. This we call m. Moreover, m is a
minimum of f. Therefore, f(m)<0 is a necessary and sufficient condition for the existence of
positive solutions of f(¢) = 0. Let us denote these solutions r; and r, (r, <7,). So, we can write

J@) = (n—t)ra—0)g(t) with g(r) # 0 # g(r2). (2.14)

Observe that f is a decreasing, convex function in {0,m], and f(0) > 0> f(m). These conditions
are sufficient for the convergence of the sequence

S (2.15)

tn+1=tn_f,(t )a 0= VY
n

to . Moreover, {¢,} is an increasing sequence.
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Repeating the proofs of Lemma 2.2 and Theorem 2.3, we obtain the next results.

Lemma 2.5. Let m be the minimum of the function f given by (2.13). Then, the linear operator
Lr(x) is defined for x € B(xo; m) and
(b + kllx = xoll P F ()|

Le(x)|| < )
H F( )“ [1 —k/(p-l— 1)||x—on”+1 —be—on]z

Theorem 2.6. Let F be as in Theorem 2.3, with (2.12) instead of (1.3). Suppose that f is given
by (2.13) and has two positive roots. Then, the Newton sequence (1.2) converges to a solution
x* of (1.1) in B(xo;r,), where r, is the smallest root of (2.13). Besides, the solution is unique in
B(xo;r2), where ry % r, is the another root of (2.13). If ry = r, the solution is unique in B(xy;r).

Next, we obtain error estimates for the sequence (2.15), when f is given by (2.13).

Theorem 2.7. The sequence {t,} defined in (2.15) is an increasing convergent sequence to r.
Moreover, if v, < r,, we have

(ry—r11) » (ry—r)
o SN TS
where
. 7 r
r= min H(1), R = max H(t), 6=R-—, o=r—,
t€[0,n] t€f0,n] 7 ¥

and

_ 60— (n—g'®)
g(t) — (1 = t)g'(t)’

If r| = ry, we have

H(1)

?"7'1 <r1 - t,, SR”rl,
where

= min H(), R = max H(r),
te[0,r] te[0,r]

_ 90— (n - g')
29(t) — (ri — Dg' (1)

Proof. We have already stated that {¢,} is an increasing convergent sequence to r;. Taking into
account (2.14),

f1(@) = —(ry—t)g(t) — (1 — )g(t) + (r1 — t)(rs — )g'(¢).
Let a, = r, — t,, b, = r, — t,. Following the proof of Theorem 2.4, we have

a _ (12 bng/(tn) - g(tn) zang/(tn) - g(t,,)
S TS N )

H()

bn+1 =b
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Then,
7 (an )2 < An+1 . (an )2 g(tn) - bngl(tn) <R (an )2
7 X — \ 7 YT e s
bn bn+1 bn g(tn) - ang’(tn) bn
and therefore,
1/ n )2” a, 1 ( " )2"
-\ r— <—<—=[(R—) .
r ( rn) b, R\ r

Taking into account that b, = r, — | + a,, the first part follows.
If r; = r,, then

g(tn) - angl(tn)
n29(tn) — a,g'(t,)

and the second part also holds. O

Anyt =1 — b1 =

3. Illustrative examples and concluding remarks

We have studied the Newton sequence (1.2) under different assumptions from those of the
Kantorovich theorem. Now, we analyze both conditions in two different ways: accessibility of solu-
tion and results on existence and uniqueness of solution.

The Kantorovich theorem assumes that F satisfies

IF'(x0)™ " (F'(x) = F'oDl<ele = yll,  x,y € (3.1

and acsé, where a is given by (2.2). Notice that (3.1) is slightly weaker than the original
Kantorovich assumption (see [8, 13]).

In regard to the accessibility of solution, Theorem 2.3 and the Kantorovich theorem are not
comparable. The following examples show situations where the Kantorovich assumptions fail and
the Theorem 2.3 fulfills or vice versa.

Example 3.1 (Huang [5]). Let X =[-1,1], Y =R, xo =0 and f:X — Y the polynomial

f0) =42+ 12— 2t L

In this case, ¢ = { and a = 2. Then ac = 16/25 > . Therefore, Kantorovich condition fails and

we cannot guarantee the convergence of the Newton sequence starting from x,.
However, under the assumptions of the Theorem 2.3, and with the same notation, we have a = %,

b=2and k = £. Then,

362 62 8 404
3ak* +3bk + b =3 =2 +3-S 4 — = —,
a4 S0k + 255 7255 T 125 ~ 125

4 6\ 8\ 512
b +2k)* = (— 2—) = (—) -
(& +2k) 25 743 5 125
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q(t) p(t) p(t)
N q(t) q(t)
1 Ty p(t) 7y T2 ™ T2
I r}\\'//rz T 2 l N 2

Fig. 2. Location of the roots of p and g.

Therefore, condition (2.7) holds, and consequently f satisfies the hypothesis of the Theorem 2.3.
Hence, the Newton’s sequence converges starting from x.

Example 3.2. Let Y =Y =R, x, =0 and f:X — Y the function
f(x)=sinx — 5x — 8.

1

In thiscase, a=2,b=0and c =k = % Then ac = 3 and the hypothesis of the Kantorovich

theorem holds. However, the polynomial (2.4) appearing in the Theorem 2.3,
— k 3 b 2 _ 1 3
p(t)—6t+5t —t+a—24t t+2,

has not got positive roots. Consequently, we cannot use the Theorem 2.3 in order to prove the
convergence of the Newton’s sequence converges starting from x.

Sometimes, the convergence of (1.2) can be established using the Kantorovich theorem or the
Theorem 2.3 indistinctly. Then we wonder which result gives us more accurate information on the
solutions of (1.1). Under the assumptions of the Theorem 2.3 we locate the solutions of (1.1)
in terms of the roots of the polynomial (2.4) (error estimates are given in Theorem 2.4). Under
Kantorovich assumptions the information is obtained from the quadratic polynomial

q(t) = %ct2 —t+a. (3.2)
Let us denote by 7,7, (¥1 <F,) the roots of g. Then

p(F) = 377 (3k7 — (e = b)), j=12
Observe that

p(F)<0 & k(1 — V1 —2ac)<3c(c — b),

p(7)<0 & k(1 + /1 - 2ac)<3c(c — b).

Our goal now is to get the smallest region where the solution is located and the biggest one where
this solution is unique. We distinguish three situations (see Fig. 2):

Case 1: k(1 + /T — 2ac)<3c(c — b). Then ry <7, 7, <r, and, consequently, the solution x* is
located in B(xy; ) and is unique in B(xp; 7).

Case 2: k(1 — /1 —2ac)<3c(c — b) < k(1 + +/1 —2ac). In this situation r <7y, r, <7,. Then
the solution x* belongs to B(x;;7;) and is the only one in B(xp;73).
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Case 3: 3c(c — b)<k(1 — /1 — 2ac). Now we have 7, <ry, r, <7, thus x* is located in B(x,;7;)
and is unique in B(xo; 7).

In the cases 1 and 3 we get the best information from Theorem 2.3 and the Kantorovich theorem
respectively. But in the case 2, the best information is obtained by mixing both results.

Example 3.3. Let X =[0,1] x [0,1], ¥ = R?, (xp, 39) = (0,0) and F: X — Y given by
x3 y2 1 y3 3x2
F(x,y)— <ﬁ+7—x+§,§+7—3y+1 .

We consider the max-norm in R2. For a bilinear operator B on X defined by the following
calculation scheme:

by b2
bt b bl

B(x, y)=(x1,x2) b;l béZ I
B b2

. b}lxl + b%le bile + bf2x2 »
Bllx, + bilx, B2y, + b2x, | \ 2
_ bi'xiy1 + bi'xay + biZxyys + bYxy y,
bélxl »n+ b%lJle + b;leyz + b§2x2y2 ’
x=x,xn)€eX, y=(»)EAL,

we consider the norm (see [2, 10])

2

ik
> bl
k=1

2
1Bl = sup max
=1

J=1

Then

1 _1
Fe.0 = (' 2 <i> - (_j>,
3 3

and |[LF(0,0)| = § =a.
On the other hand, if we compose a linear operator in R?

a;g a
L — ( 1 “412 )
az ax
with B we obtain a new bilinear operator, whose associated matrix is

11 1 12 12
anb, +apby, anb;” + anb,

21 21 22 22
LB a”bl +012b2 a“bl +a12b2

11 11 12 12
azlb, + a22b2 a21b1 -+ a22b2

21 21 22 22
anby’ + apb; anb\” + anb;
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As a particular case

00 0 0
01 _1
, -1 0 2 0
won=(5 ) 5= | e
3/ 3 3
00 0 0

and || [LF"(0,0)|| = ; = b. Besides,

x/4 0
1" " ‘1 O 0 0
R - Frool=( o %) | 55
3
0 3y/4
~x/4 0
0 0
1 o o
0 —y/4

and ||[F"(x, y) — F"(0,0)]|| < i]](x,y)“. Hence k = %
The polynomial given by (2.4) is

pty=1—t+ 12+ L.

This polynomial has positive roots and therefore the Theorem 2.3 holds.
We also have

-x/4 0
" _ 0 -1/2
0 —-y/4
and then,

IGF"(x, »)||€2=¢, Y(x,y)€eX =[0,1]x[0,1].

So, we obtain ac = } < }, and Kantorovich theorem also holds. In this situation, the polynomial
(3.2) is

3.2
g(t) =3 — 1+ 1.
Since

1+
k(1 ++v1 —2ac) = 2

as in the case 1, we obtain better information from the polynomial (2.4). Actually, we know that the
solution is located in B(0; ;) = B(0;0.3695) and is the only one in B(0;r;) = B(0;2.4533) instead

==

<3c(c—b)= 136,
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Table 1

Error comparisons

Iteration r— Ity 71— S

0 0.3695850618081907 0.3905242917512699
1 0.0362517284748574 0.1067190958417936
2 0.0004701842187366 0.0163540286238108
3 0.0000000820038027 0.0000014159342765
4 0.0000000000000025 0.0000000000010632

of the regions obtained from the quadratic polynomial: B(0;7;) = B(0;0.3905) and B(0;7,) =
B(0;2.2761).

Finally, we compare the error bounds we get from p and g¢. Let us denote (x*, y*) the solution
of F(x,y) =0, and {x,} the Newton sequence

(Xnt15 Yrr1) = (X Yn) — F' (%, y,,)_lF(x,,, Yn)s (%0, 0) = (0,0).

Let », and 7; be the smallest positive roots of p(¢) = 0 and ¢(¢) = 0 respectively; {t,} and {s,}
the Newton sequences

Z n
It =t — P n)’ Spt1 = S8 q(S ) So =128 =0.

p'(t,) " g ()
We know that

II(X*’ y*) - (xmyn)n <71 - tn
and
G, %) = Gy Y| 71 — 50

Both error estimates are compared in Table 1.
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