On Gagliardo-Nirenberg Type Inequalities

  1. Kolyada, V.I. 2
  2. Pérez Lázaro, F.J. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Karlstad University
    info

    Karlstad University

    Karlstad, Suecia

    ROR https://ror.org/05s754026

Revista:
Journal of Fourier Analysis and Applications

ISSN: 1069-5869

Año de publicación: 2014

Volumen: 20

Número: 3

Páginas: 577-607

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1007/S00041-014-9320-Y SCOPUS: 2-s2.0-84902372706 WoS: WOS:000337789300007 arXiv: 1211.1315v1 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Fourier Analysis and Applications

Repositorio institucional: lockAcceso abierto Editor

Objetivos de desarrollo sostenible

Resumen

We present a Gagliardo-Nirenberg inequality which bounds Lorentz norms of a function by Sobolev norms and homogeneous Besov quasinorms with negative smoothness. We prove also other versions involving Besov or Triebel-Lizorkin quasinorms. These inequalities can be considered as refinements of Sobolev type embeddings. They can also be applied to obtain Gagliardo-Nirenberg inequalities in some limiting cases. Our methods are based on estimates of rearrangements in terms of heat kernels. These methods enable us to cover also the case of Sobolev norms with p = 1. © 2014 Springer Science+Business Media New York.