Analytical formulation to compute QFT bounds: the envelope method

  1. Martín-Romero, J.J. 2
  2. Gil-Martínez, M. 3
  3. García-Sanz, M. 1
  1. 1 Universidad Pública de Navarra
    info

    Universidad Pública de Navarra

    Pamplona, España

    ROR https://ror.org/02z0cah89

  2. 2 Department of Electrical and Electronic Engineering, IES Manuel Bartolomé Cossío, 26200 Haro, Spain
  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revue:
International Journal of Robust and Nonlinear Control

ISSN: 1049-8923

Année de publication: 2009

Volumen: 19

Número: 17

Pages: 1959-1971

Type: Article

beta Ver similares en nube de resultados
DOI: 10.1002/RNC.1424 SCOPUS: 2-s2.0-73649094111 WoS: WOS:000271964300007 GOOGLE SCHOLAR

D'autres publications dans: International Journal of Robust and Nonlinear Control

Dépôt institutionnel: lock_openAccès ouvert Editor

Objectifs de Développement Durable

Résumé

This paper describes an analytical formulation to compute quantitative feedback theory (QFT) bounds in one-degree-offreedom feedback control problems. The new approach is based on envelope curves and shows that a QFT control specification can be expressed as a family of circumferences. Then, the controller bound is defined by the envelope curve of this family and can be obtained as an analytical function. This offers the possibility of studying the QFT bounds in an analytical way with several useful properties. Gridding methods are avoided, resulting in a lower computational effort procedure. The new formulation improves the accuracy of previous methods and allows the designer to calculate multivalued bounds. © 2008 John Wiley & Sons, Ltd.