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SUMMARY

This paper describes an analytical formulation to compute quantitative feedback theory (QFT) bounds in one-degree-of-
freedom feedback control problems. The new approach is based on envelope curves and shows that a QFT control specification
can be expressed as a family of circumferences. Then, the controller bound is defined by the envelope curve of this family
and can be obtained as an analytical function. This offers the possibility of studying the QFT bounds in an analytical way
with several useful properties. Gridding methods are avoided, resulting in a lower computational effort procedure. The new
formulation improves the accuracy of previous methods and allows the designer to calculate multivalued bounds. Copyright
q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quantitative feedback theory (QFT) [1, 2] has proven
to be an efficient and practical engineering method-
ology in a large number of cases [3–5]. In the first QFT
Symposium (1992) Prof. Horowitz said: ‘There is room
in QFT for highly diverse talents: the non-mathematical
practical engineer with physical insight and inventive
talent, the skilled mathematician interested in exis-
tence theorems and abstract generalizations, up to the
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stubborn, even plodding researcher who by hard dedi-
cated work acquires deep understanding of this subject’.
He added: ‘QFT is as yet in its infancy, pointing to
vast, available problem areas’. Much progress has been
made and many difficulties have been overcome in the
last 15 years. However, as Horowitz insisted in the fifth
QFT Symposium [6] that analysis is still true today. In
fact, basic (but not simple) problems such as template
or bound calculation have not been completely solved
yet. This paper focuses on the bound computation
problem, looking for a new formulation that obtains
analytical QFT bounds for one-degree-of-freedom
(1 DoF) control cases.

QFT bounds are the limits (maximum and/or
minimum) of the open-loop nominal transfer func-
tion Lo(j�)= Po(j�)G(j�) at each frequency that
guarantees to meet the required closed-loop control
specifications for all the plants in the uncertainty
set. QFT specifications for minimum phase systems
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are formulated as inequalities of certain magnitude
transfer functions for the desired closed-loop frequency
response. Using these specifications and taking the
templates into account (model plus uncertainty), the
QFT bounds are computed; one for each robust control
specification and frequency. A �i -template is the set of
all possible values of the uncertain plant at frequency
�i . Only the boundary of this �i -template is necessary
for the controller design. This contour of the template
at �i will be labelled as T�i [7, 8].

Originally, QFT bounds were calculated by using
manual graphical manipulations of plant templates
on the Nichols chart. Searching for a solution to
this tedious procedure, several researches developed
some algorithms for automatic bound computation.
Early bound generation algorithms used geometrical
and/or search-based CAD techniques [9–13]. After-
wards, more efficient numerical algorithms based on
quadratic inequalities were proposed [14–18]. These
algorithms established a formal process that mapped
plant uncertainty and feedback specifications into
the bound expressions through quadratic inequalities.
They form the basis of the bound computation in
the well-known QFT Toolbox [19]. The Qsyn [20],
another CAD solution, improves bound calculation
using algorithms based on the cross section concept
[21–23]. Algorithms based on quadratic inequalities
are only able to find out two values of the QFT
bound (maximum and minimum values) at one phase
�∈[−2�,0], whereas those based on cross section
calculate all possible values (multivalued bounds).
Some examples of multivalued bounds are shown for
the robust tracking specification in [22, 23]. At the end
of this work another example of multivalued bound
is shown for the robust control effort specification.
Other works that improve the efficiency and accuracy
of the algorithms are in [24–26]. However, all of them
present trade-offs between accuracy and computation
time: they are based on computational nested loops for
discrete sets according to uncertainty, frequency and
the bound phase.

This paper extends [27, 28] and describes an analyt-
ical formulation that uses envelope curves to compute
the QFT bounds for 1 DoF control systems. It avoids
former gridding methods thus improving accuracy and
reducing computational effort.

In Section 2 the envelope method is expounded.
Section 3 particularizes the solution for robust noise
rejection and robust stability problems. Section 4 solves
the bound computation for control specifications based
on the sensitivity function (i.e. the robust disturbance
rejection at the plant output). The problem of robust
disturbance rejection at the plant input is considered in
Section 5. Section 6 makes the same with the control
effort bound and Section 7 shows some remarks. Two
examples for different robust control specifications
illustrate the methodology in Section 8. Finally, the
conclusions are presented in Section 9.

2. THE ENVELOPE METHOD

Let us consider the classical 1 DoF control diagram
shown in Figure 1, where the plant P(s) has uncer-
tainty, the reference input r(t) is constant and the
remaining blocks are known.

A general single-input–single-output QFT control
specification can be expressed as:∣∣∣∣ A(j�i ,�)+B(j�i ,�)G�i

1+C(j�i ,�)G�i

∣∣∣∣��(�i )

∀�i ∈[�min,�max] (1)

Note that �(�i ) is the upper limit of the control spec-
ification magnitude at the frequency �i and A=aejϑa =
Ar + jAi , B=bejϑb=Br+jBi and C=cejϑc =Cr + jCi
are complex functions. They depend on the plant
template values, which are given by T�i (�).‡
G�i=gej� =gre+ jgim is the controller bound§ for
the �(�i ) control specification. As long as each
control specification provides a G�i , G

(1)
�i is the bound

controller for the specification |PG/(1+PG)|��1,
G

(2)
�i for |1/(1+PG)|��2, G

(3)
�i for |P/(1+PG)|��3

and G
(4)
�i for |G/(1+PG)|��4. Then, without loosing

generality, it is assumed that H(s)=1. �1, �2, �3 and

‡In general, T�i (�) is supposed to be an analytical continuous
and differentiable function of �∈[0,2�] that defines the template
contour at �i [7, 8]. Nevertheless, the methodology is also valid
for discrete � arrays (discrete templates).
§The QFT bound to perform the loopshaping is B�i = PoG�i ,
where Po is the nominal plant.
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Figure 1. Classical control structure.

�4 are magnitude frequency models of the desired
closed-loop performance or stability specifications in a
classical feedback control structure (G: controller, P:
plant).

Equation (1) can be rewritten using imaginary and
real parts as∣∣∣∣ Ar + jAi +(Br + jBi )(gre+ jgim)

1+(Cr + jCi )(gre+ jgim)

∣∣∣∣�� (2)

to obtain a quadratic inequality:

((C2
r +C2

i )�
2−(B2

r +B2
i ))(g

2
re+g2im)

+2(�2Cr −Ar Br −Ai Bi )gre

−2(�2Ci +Ai Br −Ar Bi )gim

+�2−A2
r −A2

i �0 (3)

Ar , Ai , Br , Bi , Cr , Ci can be a function of T�i

and depend on a parameter � used to track the plant
template contour. Taking (3) as an equation (mathemat-
ical expression equals zero), a circumference family
(one circumference for each � value) is obtained. The
structure of this family is

(gre−grc)
2+(gim−gic)

2=r2 (4)

where the center (real and imaginary parts) is defined by

grc(�) = −�2Cr +Ar Br +Ai Bi
(C2

r +C2
i )�

2−B2
r −B2

i

gic(�) = �2Ci +Ai Br −Ar Bi
(C2

r +C2
i )�

2−B2
r −B2

i

(5)

and the radius is

r(�)= �
√

(z1−z2)

(C2
r +C2

i )�
2−B2

r −B2
i

(6)

being

z1 = (A2
r +A2

i )(C
2
r +C2

i )+B2
r +B2

i

z2 = 2(Ar Br +Ai Bi )Cr −2(Ai Br −Ar Bi )Ci

If the plant does not have uncertainty, expression (4)
is a circumference that delimitates the area where the
controller can be defined in the Re–Im plane; that is,
the controller bound G�i . On the other hand, if there
is uncertainty, the controller bound G�i is the contour
of the circumference family (the envelope curve [29]).
Therefore, the bound problem is reduced to computing
the envelope curve of the family (4). The circumference
family can be written in a parametric form as

grc(�) + r(�)cos�

gic(�) + r(�)sin�
(7)

where �∈[0,2�]. Each point of the envelope curve is
obtained by computing the intersection of two infinites-
imally close circumferences. Then, an infinitesimally
close circumference to (7) is

grc(�+��)+r(�+��)cos�

gic(�+��)+r(�+��)sin�
(8)

being �� an infinitesimal variation of �. The intersec-
tion between (7) and (8) yields

grc(�)+r(�)cos�1 = grc(�+��)

+r(�+��)cos(�2)

gic(�)+r(�)sin�1 = gic(�+��)

+r(�+��)sin(�2)

(9)

As long as � and �+�� are infinitesimally close, �1
and �2 are infinitesimally close too. Therefore, making
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�1=� and �2=�+��, it is found that

grc(�)+r(�)cos� = grc(�+��)

+r(�+��)cos(�+��)

gic(�)+r(�)sin� = gic(�+��)

+r(�+��)sin(�+��)

(10)

If it is supposed that f (x+�x)= f (x)+� f (x)=
f (x)+ f ′(x)�x , expression (10) can be reduced to

g′
rc(�)��+r ′(�)cos��� = r(�)sin���

+r ′(�)sin�����

g′
ic(�)��+r ′(�)sin��� = −r(�)cos���

+r ′(�)cos�����

(11)

where

g′
rc(�) = dgrc(�)

d�
, g′

ic(�)= dgic(�)

d�
and

r ′(�) = dr(�)

d�

Obtaining �� from every equation and making equal
both expressions:

g′
rc(�)+r ′(�)cos(�)

r(�)sin�+r ′(�)sin���

= g′
ic(�)+r ′(�)sin(�)

r(�)cos�+r ′(�)cos���
(12)

The limit of (12) when ��→0 provides

g′
rc(�)cos�+g′

ic(�)sin�+r ′(�)=0 (13)

By solving (13), it is obtained

�1,2(�)=arctan

⎛
⎝−g′

ic(�)r ′(�)∓g′
rc(�)

√
g′
ic(�)

2+g′
rc(�)2−r ′(�)2

−g′
rc(�)r ′(�)±g′

ic(�)

√
g′
ic(�)

2+g′
rc(�)2−r ′(�)2

⎞
⎠ (14)

where

g′
rc(�) = dgrc(�)

d�
, g′

ic(�)= dgic(�)

d�
and

r ′(�) = dr(�)

d�

Figure 2. Controller bound from an open template. Note
that the curves shown are circumferences, but the picture

is on a scale that make them seem ellipses.

If the template contour T�i is closed, the curve of
the centers (grc,gic) is closed too. The two solutions in
(14) provide the outer envelope curve and the inner one.
The controller bound is defined by the inner envelope
curve if the radius r(�) of some circumference of the
family is negative and it is defined by the outer one in
the other case.¶ Then, the controller bound G�i can be
expressed as a function of �:

G�i (�)=
{
grc(�)+r(�)cos(�(�))

gic(�)+r(�)sin(�(�))
(15)

If T�i is an open curve, the two solutions and a
portion of the extreme circumferences are necessary to
calculate the envelope curve. Figure 2 shows a family
of circumferences (dashed lines) obtained from an open
template. Solid black lines are defined by the extreme
circumferences and solid gray lines are given by the
two solutions of (14).

The previous calculation of the controller bound
assumes that the intersection of two infinitesimally
close circumferences exists. However, if the square

¶This can be proved by taking into account the inequality (3) and
the structure of the circumference family, which is defined by
expressions (4)–(6).
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Figure 3. Robust stability bound B(1)
�i

= PoG(1)
�i

obtained by the envelope method using a template
with a strong concavity.

root of (14) results in a complex number, some circum-
ferences of the family are inner (or outer) to their
infinitesimally close ones and there is no intersection.
This situation arises when

g′
ic(�)

2+g′
rc(�)

2−r ′(�)
2
<0 (16)

Then, the T�i (�) points that keep (16) do not
generate bound points and should be eliminated.
According to this a new template contour T�

�i
,

labelled equivalent template, should be obtained. The
equivalent template is the set of all the points of the
template contour T�i that generates all the points of
the bound. In Section 4, it is explained how to use
T�

�i
to calculate the controller bound.

Another particular case arises when the template has
a deep concavity. Then, the bound obtained using (15)
could not be a Jordan curve (a simple and closed curve)
and some pieces of this would not be relevant for the
controller design. Figure 3 illustrates this problem at
s= j�= j1 for the uncertain plant

P= e−T s

s2+0.04s+�2
n

shown in [30], where T ∈[0,2] and �n ∈[0.7,1.2],
and a control specification |PG/(1+PG)|<1.82.
The envelope method provides the curve marked with
circles; the effective QFT bound is the solid black
line. A complementary analysis of this problem can be
found in [31].

Finally, if the template is non-connected a controller
bound must be found for every piece of it. After that,
the intersection of valid surfaces must be computed to
find the final controller bound. An example is shown
in Section 4.

3. ROBUST STABILITY AND NOISE
REJECTION BOUNDS

Robust stability and robust noise attenuation specifica-
tions are defined as∣∣∣∣ P(j�i )G�i

1+P(j�i )G�i

∣∣∣∣��1(�i ) (17)

where �1(�i )=�1 is a real number‖ for a fixed
frequency �i . Comparing with (1): A=0 and B=
C= P(j�i )=T�i = pre+ jpim. Then, (17) can be
written as∣∣∣∣ (gre+ jgim)(pre(�)+ jpim(�))

1+(gre+ jgim)(pre(�)+ jpim(�))

∣∣∣∣��1 (18)

The circumference family is

−pre(�)
�21

�21−1

pre(�)2+pim(�)2
+

�1
�21−1√

pre(�)2+pim(�)2
cos(�)

pim(�)
�21

�21−1

pre(�)2+pim(�)2
+

�1
�21−1√

pre(�)2+pim(�)2
sin(�)

(19)

The solutions in (14) are valid if (16) is not kept.
The worst case appears when the template comes from
an uncertain gain because

r(�)=
�1

�21−1√
pre(�)2+ pim(�)2

and its maximum variation r ′(�) appears with a
maximum change of the module

√
pre(�)2+ pim(�)2.

‖This number indicates the desired gain and phase margins
MG�1+1/�1 and MF�180◦−2arccos1/2�1 or the desired
noise reduction at �i .
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Figure 4. Controller bound (gre(�),gim(�)) and its circum-
ference family.

Thus, the most unfavorable template∗∗ is

T�i (�)=
{
m1�

m2�
(20)

where m1 and m2 are constants. Obtaining grc(�),
gic(�) and r(�), and substituting them in (16),
the condition of intersection existence between two
infinitesimally close circumference is

�21
(�21−1)(m2

1+m2
2)�

4
>0 (21)

If �1>1, the earlier expression is always true and the
controller bound is obtained substituting (14) in (19).
Figure 4 shows the bound controller on the Re–Im plane
for the plant

P= e−T s

s2+0.04s+�2
n

and the case described in Section 2 (see Figure 3),
where the outer envelope curve has been selected. The
circumference family and the (grc(�),gic(�)) curve are
also shown.

∗∗On the other hand, the most favorable case arises if the template
comes from an uncertain delay in the dynamic plant. Then,
the radius variation r ′(�) is zero because the module is a real
number.

For feedback control specifications with �1<1, a
procedure such as the one described in Section 4 must
be used.

4. ROBUST SENSITIVITY BOUNDS

The robust sensitivity specification imposes an upper
limit in the magnitude so that∣∣∣∣ 1

1+P(j�i )G�i

∣∣∣∣<�2 (22)

According to (3), with A=1, B=0 and C=P(j�i )=
T�i = pre+ jpim, (22) can be written as

(pim(�)2+ pre(�)2)(g2im+g2re)+2(pre(�)gre

−pim(�)gim)+1− 1

�22
�0 (23)

The family of circumferences appears when (23)
equals 0:

− pre(�)

pre(�)2+pim(�)2
+ �−1

2√
pre(�)2+pim(�)2

cos(�)

pim(�)

pre(�)2+pim(�)2
+ �−1

2√
pre(�)2+pim(�)2

sin(�)

(24)

The intersection between two infinitesimally close
circumferences must exist to accomplish the substitu-
tion of the � parameter in (14). The less favorable case
occurs when the radius variation reaches the maximum,
that is, if the template comes from an uncertain gain:
T�i =(pre(�), pim(�))=(m1�,m2�), where m1, m2
are constants and � is the uncertain parameter. Under
these conditions, (16) is evaluated obtaining,

�22−1

�22
�4(m2

1+m2
2)

<0 (25)

Inequality (25) is not achieved if �2 is greater
than 1. Then, the envelope method can be applied by
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Figure 5. Circumference family without intersections.

substituting (14) into (19). According to (25), if �2<1
the square roots of (14) are complex. Imagine a plant
P=k/(s+2) with k∈[5,15], �=3rad/s and �2=0.5,
the circumference family would be the one shown
in Figure 5. A similar behaviour is obtained for the
control specification in (17) with �1<1.

This proves that in each set of template points with
the same phase, only the lowest gain point of this set
generates a point of the controller bound; the other
points of this set can be eliminated. Figure 6 illus-
trates this with an example; the circled points of the
template have no influence on the controller bound.
What is more, some of the rest of the points could
not generate bound points if some circumferences were
within others. It depends on the value of �2 and is
simple to determine by computation.

Those template points that generate bound points
define the equivalent templateT�

�i
. Figure 7 shows the

equivalent template for two different �2 values.
If the equivalent template is open and differ-

entiable in its extremes, the envelope curve can
be obtained without using pieces of the extreme
circumferences.†† Defining T�

�i
as

T�
�i

=T�i (�) with �∈[�1,�2] (26)

††In Section 2 it is explained how to calculate a controller bound
from an open template that is non-differentiable in its extremes.

Figure 6. Example of valid pieces of the template and non
valid ones to calculate G(2)

�i
.

Figure 7. Equivalent template T�
�i

for two �2 values.
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and being T�i (�) continuous and differentiable in �∈
[�1−ε�,�2+ε�], where ε� is infinitesimal, for the
angles

�1 = arctan

⎛
⎝−g′

ic(�1)r
′(�1)−g′

rc(�1)

√
g′
ic(�1)

2+g′
rc(�1)

2−r ′(�1)
2

−g′
rc(�1)r ′(�1)+g′

ic(�1)

√
g′
ic(�1)

2+g′
rc(�1)

2−r ′(�1)
2

⎞
⎠

�2 = arctan

⎛
⎝−g′

ic(�2)r
′(�2)+g′

rc(�2)

√
g′
ic(�2)

2+g′
rc(�2)

2−r ′(�2)
2

−g′
rc(�2)r ′(�2)−g′

ic(�2)

√
g′
ic(�2)

2+g′
rc(�2)

2−r ′(�2)
2

⎞
⎠

(27)

it is obtained,

grc(�1)+r(�1)cos(�1) = grc(�2)+r(�2)cos(�2)

gic(�1)+r(�1)sin(�1) = gic(�2)+r(�2)sin(�2)
(28)

This means that the controller bound can be
completely computed by evaluating (15) with the
points of T�

�i
. However, there are templates that are

not continuous and differentiable in [�1−ε�,�2+ε�].
In these cases, it is necessary to take some points of the
extreme‡‡ circumferences as explained in Section 2.
Figure 8 shows an example where T�

�i
is defined by

two pieces that are not differentiable in their extremes.

The two pieces of T�
�i

define two ‘sub-bounds’ of

the controller, G′
�i

and G′′
�i
. The controller bound G2

�i

is the intersection§§ of both.

5. ROBUST DISTURBANCE REJECTION
AT THE PLANT INPUT BOUNDS

The control specification for robust disturbance
rejection at plant input is |P/(1+PG)|��3. Then,
B(j�)=0 and A=C=T�i (�)= pre(�)+ jpim(�) in

‡‡Extreme circumferences are defined for �=�1 and �=�2.
§§A controller bound defines an area of the Re–Im plane where
the controller can be located. The intersection of the areas of
different controller bounds gives the most unfavorable case.

(1). By using (5) and (6) and substituting in (7), the
circumference family is

− pre(�)

pre(�)2+ pim(�)2
+ 1

�3
cos(�)

pim(�)

pre(�)2+ pim(�)2
+ 1

�3
sin(�)

(29)

Figure 8. T2�
�i

compound of two pieces (above) and the
final controller bound (below).
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In this case, the radius is constant, r(�)=1/�3.
Therefore, inequality (16) is not fulfilled and (14) can
be applied. See [27] for an example of the envelope
method in this case.

6. ROBUST CONTROL EFFORT BOUND

The control specification for control effort is |G/

(1+PG)|��4. In this case, let us substitute in (1)
A(j�)=0, B(j�)=1 and C=T�i (�)= pre(�)+
jpim(�). The inequality (3) becomes

(g2re+g2im)(�24(p
2
re+ p2im)−1)+2�24gre pre

−2�24gim pim+�24�0 (30)

When this expression is equal to zero, the family of
circumferences is:

−�24 pre(�)

�24(pre(�)2+ pim(�)2)−1

+ �4
�24(pre(�)2+ pim(�)2)−1

cos(�)

�24 pim(�)

�24(pre(�)2+ pim(�)2)−1

+ �4
�24(pre(�)2+ pim(�)2)−1

sin(�)

(31)

The radius is only a function of the module because
r =�4/(�

2
4m

2−1) where m=√
pre(�)2+ pim(�)2.

Then, its largest variation appears when T�i (�) is
built from an uncertain gain, see (20). Expression (16)
becomes:

(m2
1+m2

2)�
4
4

((m2
1+m2

2)�
2�24−1)2

<0 (32)

that is impossible to achieve. Therefore, each pair of
two infinitesimally close circumferences has always at
least one common point.

Despite (16) or (32) are not met, it cannot be
concluded that every point in the template contour

Figure 9. Circumference evolution from positive to negative
�24(pre(�)2+ pim(�)2)−1 values.

T�i (�) generates a controller bound point and further
analysis is necessary. Some template contour points
could achieve both �24(pre(�)2+ pim(�)2)−1>0 or
�24(pre(�)2+ pim(�)2)−1<0. The sign variation in this
expression produces a high variation of the circum-
ference center (grc(�),gic(�)) and the radius r(�)

sign. A positive radius implies that the outer enve-
lope curve keeps inequality (30). A negative radius
implies that (30) is kept by the inner envelope curve.
If �24(pre(�)2+ pim(�)2)−1=0, the circumference
becomes a line. Taking this into account, the template
contour points such that �24(pre(�)2+ pim(�)2)−1<0
will give the less favorable bound. Figure 9 shows
the evolution of the circumference family when the
sign of the earlier expression changes from positive to
negative. Circumferences are bi-coloured (black and
gray) to identify each side of the plane they divide and
the arrows indicate the part of the plane that keeps the
control specification.

The following can be concluded: for those templates
where every point keeps �24(pre(�)2+ pim(�)2)−1>0,
the controller bound is determined by the outer
envelope curve of the family. For templates where
every point keeps �24(pre(�)2+ pim(�)2)−1<0, the
controller bound is determined by the inner envelope
curve of the family. For templates where some points
keep �24(pre(�)2+ pim(�)2)−1>0 and others keep
�24(pre(�)2+ pim(�)2)−1<0, the controller bound is
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only determined by the template points that keep the
last inequality (those that produce negative radius).

7. REMARKS

The envelope method allows the designer to calcu-
late analytical QFT bounds for robust performance and
robust stability control specifications with the following
advantages:

• The new algorithm avoids the computational
nested loops for the discrete value set of the
controller’s phase used in Borghesani’s [19]
toolbox or the discrete value set of the nominal
open loop in the cross section method [20, 22, 23],
as well as the nested loops for the discrete value
set of the plant required in all those methods.
Hence, accuracy is improved and computational
effort is significantly reduced.

• There is no restriction to compute multivalued
bounds. Then, it is possible to calculate all the
points that define the QFT bound at each phase.

• The solution bound is expressed as an analytical
function on the independent variable �, used to
track the plant template contour. Thus, the math-
ematical results are based on the use of T�i (�).
This function of a variable � can be obtained
by approximating the discrete contour of the �i -
template. In [7, 8] it is shown how this discrete
contour is approximated using the Fourier series.

• The use of analytical functions for the bound
expressions, apart from improving accuracy and

reducing computational cost, gives the definition
of algebraical and geometrical properties and
finds a relationship between the template points
(equivalent template T�

�i
) and the bound points.

• To use the envelope method, the derivative of
the template contour T�i must exist. Then, it is
necessary to make the corners of T�i round. This
is a simple task and produces a negligible error.
One solution to make round a discrete template
contour defined by the array p of consecutive
points could be:

k=2; angmin=5.5*pi/6;
while k<length(p),

%Angle between two consecutive lines:
angulo=abs(angle(p(k-1)-p(k))-angle(p(k+1)-p(k)));
if angulo>pi, angulo=2*pi-angulo;end

if angulo<angmin,
p(k)=(p(k-1)+p(k)+p(k+1))/3;
k=k-2;

end
k=k+1;

end

• The reference tracking specification is formu-
lated by using the form: �5inf<|FPG/(1+
PG)|<�5sup, which needs a 2 DoF (prefilter and
controller) control structure. When this double
inequality is reduced to one of the form (1), two
uncertain transfer functions and two template
contours arise, instead of just one as the envelope
method formulates. New research is needed for
this case, being it out of the scope of this paper.

8. EXAMPLES

This section shows two examples of QFT bounds
computation using the envelope method. In the first
subsection, a case of robust sensitive reduction is
studied. The second subsection shows how the method
works calculating control effort bounds. The envelope
method is compared with the Borghesani toolbox
method [19] in both cases. Additional examples of
robust stability and robust disturbance rejection at
plant input bounds can be found in [27].
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Figure 10. Bounds for the specifications of the example.

8.1. Example 1: Robust disturbance rejection at the
plant output

Let us consider the plant:

P(s)= ke−0.3s

(s+a)(s+20)
, k∈[1,10], a∈[1,5] (33)

The aim is to obtain the bounds for robust distur-
bance rejection at the plant output at �=5rad/s:
|1/(1+PG)|<�2, for the specifications �2=0.1, 0.5
and 0.9.

First, the discrete template is computed with an
adequate number of points (in this case a 400 element
array). Then, grc, gic and r are obtained using (24).
After that, their derivatives are calculated. The exam-
ples presented in this paper use the forward difference
method to compute the derivatives, that is

f ′(x1)= f (x1+�)− f (x1)

�

Note that the truncation error is of �th order although
its exact computation is unfeasible because the func-
tion T�i is unknown. The derivative is obtained from
the 400 element array that defines the discrete contour
template, performing the difference between the n+1

and the n elements of this array. If the points defined in
T�i are close enough, this approximation works fine
as it is shown in the comparative results.

Previously, the equivalent template for each speci-
fication value must be calculated. Finally, the bounds
can be obtained by substituting the � parameter of (24)
with (14). Figure 10 shows them.

The results obtained with Borghesani’s toolbox are
bounds defined by an equidistant phases set (73 phases
by default). The number of points obtained using the
envelope method is equal to the number of points of
the discrete template contour (although T�i (�) is an
analytical function, it must be discretized to be used
with a computational program). Therefore, the number
of points obtained with the envelope method is usually
quite higher than the one obtained with the Borghesani’s
toolbox (because the number of template points can be
several hundreds).

The computation time required by the Borghesani
toolbox was 265ms for the three bounds. The envelope
method took 11ms. The commands tic-toc were used
running on Windows XP and Matlab QFT toolbox [19]
over a PC with a 1.4GHz Pentium IV processor and
512Mb RAM.
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Figure 11. Control effort bound computed using the Borgh-
esani toolbox and the envelope method.

8.2. Example 2: Robust control effort bound

It is desired to compute the robust control effort bound
at �=5rad/s for the plant:

P= 500e−0.3s

(s+a)(s+6b)
(34)

where a∈[1,5] and b∈[1,10]. The control effort spec-
ification at �=5rad/s is |G/(1+PG)|<2.

In a similar way as the one indicated in the previous
example, the values of grc, gic, r and their derivatives
are computed. Using (31) the bound is obtained.
Figure 11 shows the results comparing different
methodologies.

The computation time required with the envelope
method was twenty times lower than the one required
with the Borghesani method. Besides, this example
shows that the envelope method is able to compute
multivalued bounds. Note that accuracy was also greater
with the envelope method because there was not loss
of bound extreme points.

9. CONCLUSIONS

This paper has described a new analytical formulation
to compute QFT bounds based on envelope curves.
The controller bound has been defined by the envelope
curve of a family of circumferences as an analytical
function with some useful properties. In comparison

with other methods, computational effort does not
increase geometrically with the number of discrete
template points and discrete bound phase points since:
(a) the bound phase is not discretized; (b) computa-
tional nested loops are not used to track both discrete
template and phase sets (gridding methods). The signif-
icant reduction of computational effort allows the user
to deal with a large number of template points, and
therefore improves accuracy. The method also allows
the designer to calculate multivalued bounds. The
advantages have been illustrated with two examples:
robust disturbance rejection at the plant output and
robust control effort.
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