New probabilistic price forecasting models: Application to the Iberian electricity market

  1. Monteiro, C. 3
  2. Ramirez-Rosado, I.J. 2
  3. Fernandez-Jimenez, L.A. 1
  4. Ribeiro, M. 3
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  3. 3 Universidade Do Porto
    info

    Universidade Do Porto

    Oporto, Portugal

    ROR https://ror.org/043pwc612

Revista:
International Journal of Electrical Power and Energy Systems

ISSN: 0142-0615

Año de publicación: 2018

Volumen: 103

Páginas: 483-496

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.IJEPES.2018.06.005 SCOPUS: 2-s2.0-85048603465 GOOGLE SCHOLAR

Otras publicaciones en: International Journal of Electrical Power and Energy Systems

Repositorio institucional: lock_openAcceso abierto Postprint lockAcceso abierto Editor

Objetivos de desarrollo sostenible

Resumen

This article presents original Probabilistic Price Forecasting Models, for day-ahead hourly price forecasts in electricity markets, based on a Nadaraya–Watson Kernel Density Estimator approach. A Gaussian Kernel Density Estimator function is used for each input variable, which allows to calculate the parameters of the probability density function (PDF) of a Beta distribution for the hourly price variable. Thus, valuable information is obtained from PDFs such as point forecasts, variance values, quantiles, probabilities of prices, and time series representations of forecast uncertainty. A Reliability Indicator is also introduced to give a measure of “reliability” of forecasts. The Probabilistic Price Forecasting Models were satisfactorily applied to the real-world case study of the Iberian Electricity Market. Input variables of these models include recent prices, power demands and power generations in the previous day, power demands in the previous week, forecasts of demand, wind power generation and weather for the day-ahead, and chronological data. The best model, corresponding to the best combination of input variables that achieves the lowest MAE, obtains one of the highest Reliability Indicator values. A systematic analysis of MAE values of the Probabilistic Price Forecasting Models for different combinations of input variables showed that as more types of input variables were considered in these models, MAE values improved and Reliability Indicator values usually increased. © 2018 Elsevier Ltd