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Abstract 8 
 9 

This article presents original Probabilistic Price Forecasting Models, for day-ahead hourly price 10 
forecasts in electricity markets, based on a Nadaraya–Watson Kernel Density Estimator approach. A 11 
Gaussian Kernel Density Estimator function is used for each input variable, which allows to calculate 12 
the parameters of the probability density function (PDF) of a Beta distribution for the hourly price 13 
variable. Thus, valuable information is obtained from PDFs such as point forecasts, variance values, 14 
quantiles, probabilities of prices, and time series representations of forecast uncertainty. A Reliability 15 
Indicator is also introduced to give a measure of “reliability” of forecasts. The Probabilistic Price 16 
Forecasting Models were satisfactorily applied to the real-world case study of the Iberian Electricity 17 
Market. Input variables of these models include recent prices, power demands and power generations 18 
in the previous day, power demands in the previous week, forecasts of demand, wind power generation 19 
and weather for the day-ahead, and chronological data. The best model, corresponding to the best 20 
combination of input variables that achieves the lowest MAE, obtains one of the highest Reliability 21 
Indicator values. A systematic analysis of MAE values of the Probabilistic Price Forecasting Models 22 
for different combinations of input variables showed that as more types of input variables were 23 
considered in these models, MAE values improved and Reliability Indicator values usually increased. 24 
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Nomenclature 29 
 30 
Abbreviations  31 

 32 
PPFM Probabilistic Price Forecasting Model  33 
DAEPF  Day-Ahead Electricity Price Forecasting  34 
NW-KDE    Nadaraya–Watson Kernel Density 35 

Estimator  36 
PDF  probability density function  37 
MAE  Mean Average Error 38 
RI  Reliability Indicator  39 
SVM  Support Vector Machine  40 
MIBEL  Iberian Electricity Market  41 
OMIE Market Operator of the MIBEL  42 
TSO Transmission System Operator 43 
REE Spanish Transmission System Operator 44 
REN Portuguese Transmission System Operator 45 
NWP  Numerical Weather Prediction 46 

GFS Global Forecast System 47 
 48 

Variables 49 
 50 
x explanatory price variable 51 
y electricity price variable 52 
xv,new explanatory price variable for  dimension v 53 

for  future hour (new) 54 
xv,p explanatory price variable for  dimension v 55 

for past instant p 56 
x1,new, …, xv,new, …, xm,new    generic case 57 

for  future hour (new) 58 
xnew explanatory price variable for  future hour 59 

(new) 60 
xv  explanatory price variable for  dimension v 61 

  62 
ynew electricity price variable for  future hour 63 

(new) 64 



newy  standardized electricity price variable 65 

between 0 and 1 corresponding to ynew  66 
yp electricity price variable for  instant p 67 

py  standardized variable between 0 and 1 68 

corresponding to yp  69 
 70 
Elements 71 
 72 
 newY  element associated with ynew 73 

 newY    element associated with newy  74 

 newX  set of elements associated with explanatory 75 

variables xv,new. 76 

 77 
Numerical values 78 
 79 
n number of cases of the historical dataset 80 
m number of price explanatory variables 81 
xnew,max highest limit value for xnew 82 
xnew,min  lowest limit value for xnew 83 
xv_max  maximum value of xv  of the historical 84 

dataset of cases  85 
xv_min  minimum value of xv  of the historical dataset 86 

of cases 87 
ynew,max the highest limit value for ynew 88 
ynew,min the lowest limit value for ynew 89 
n-new,min   number related to ynew,min  90 
n-new,max   number related to ynew,max 91 
bla basic level of activation 92 
bla_std standardized basic level of activation 93 
Fchg factor between 0 and 1 94 
Np minimum number of activated points from 95 

the historical dataset  96 
NQ  total number intervals  97 
N  number of elements in the out-sample 98 

dataset 99 

 100 
Parameters 101 
 102 
hv  bandwidth for dimension v   103 
new parameter   of PDF of a Beta distribution 104 

for  future hour (new) 105 
new parameter  of PDF of a Beta distribution for  106 

future hour (new) 107 
(new, new, ynew,min, ynew,max) parameters of a PDF 108 

of a Beta distribution for  future hour (new) 109 
 (new_q, new_q, ynew_q,min, ynew_q,max)  parameters of a PDF 110 

of a Beta distribution for  new case q  111 
 112 
Functions 113 

 114 
 vnewvpvv hxxK ,; ,,

 kernel density estimation function 115 

Fnew (new, new, ynew,min, ynew,max)  Beta cumulative 116 
distribution function for  future hour (new) 117 

),;( newnewnewyf    PDF of a Beta distribution, in 0 ; 1, 118 
for 

newy  119 

 fnew (ynew ; new, new, ynew,min ; ynew,max)  PDF of a 120 
Beta distribution   for future hour (new) 121 

Fnew_q (yq; new_q, new_q, ynew_q,min, ynew_q,max)  Beta 122 
cumulative distribution function for  new 123 
case q for future hour (new) 124 

 125 
Frequencies 126 
 127 
fobs,i   observed frequencies in the interval i 128 
ftar,i   target frequency in the interval i 129 

 130 
Data for application of  PPFM models to MIBEL 131 
 132 
pD-6,h

 
 price for hour h of day D-6 133 

pD,h  price for hour h of the day D 134 
wD+1 week 135 

tDhDT ,,1
ˆ


 regional weighted forecasted hourly 136 

temperature for hour h of day D+1, obtained 137 
at hour t of the day D 138 

tDhDI ,,1
ˆ


  regional weighted forecasted hourly 139 

irradiations for hour h of day D+1, obtained 140 
at hour t of the day D 141 

tDhDv ,,1ˆ 
 regional weighted forecasted hourly wind 142 

speeds for hour h of day D+1, obtained at 143 
hour t of the day D 144 

HGD-1,h hydropower generation for hour h of day D-145 
1 146 

SGD-1,h  solar power generation and power 147 
cogeneration for hour h of day D-1 148 

CGD-1,h  coal power generation for hour h of day D-1 149 
CCGD-1,h combined cycle power generation for hour h 150 

of day D-1 151 
WGD-1,h wind power generation hour h of day D-1 152 
NGD-1,h   nuclear power generation  hour h of day D-153 

1 154 
LDD-1,h  power demand hour h of day D-1 155 
LDD-6,h  power demand hour h of day D-6 156 

tDhDGW ,,1
ˆ


 wind power generation forecast for hour h of 157 

day D+1, obtained at hour t of the day D 158 
tDhDDL ,,1

ˆ


 power demand forecast for hour h of day 159 

D+1, obtained at hour t of the day D 160 
Preal_T   real hourly price value for the hour T 161 

 162 

 163 
Forecasts from the application of PPFM models to 164 
MIBEL 165 



 166 
d

tDhDp ,,1
ˆ 

  day-ahead hourly price forecast for hour h of 167 

day D+1, obtained at hour t of the day D 168 

Pforecast_T  expected value of hourly price of a PPMF 169 
model for the hour T.  170 

 171 

 172 
 173 
 174 
 175 
1.  Introduction 176 
 177 

1.1. Context of this research related to the day-ahead electricity price forecasting 178 
 179 

In the last 25 years the transition from monopolistic power sectors to competitive ones has led 180 

to the trade of electricity under market rules. In the market paradigm, the economic operation of the 181 

power system is based on price signals that are holistically influenced by all the market agents, which 182 

try to achieve their economic interests. These price signals are mainly generated in the day-ahead 183 

market, which influences all the remaining market prices (e.g., intraday markets, derivative product 184 

markets, and bilateral markets). Knowing in advance the prices that will be settled by the day-ahead 185 

electricity market is essential for the price-makers' agents, guiding the bidding decision-making 186 

process in order to maximize their economic profit.  187 

 188 

Furthermore, knowing the prices in advance is even important for the least relevant agents 189 

(those who, due to their low volume of trading operations, do not influence the price value), who can 190 

evaluate the risk of anomalous prices in advance and, consequently, respond to high or low price 191 

forecasts by managing their electricity consumption and/or their self-power generation.  192 

 193 

Therefore, a significant effort has been made in recent years to develop Day-Ahead Electricity 194 

Price Forecasting models (DAEPF models). Most of the published DAEPF models are focused on 195 

point (spot) forecasts, that is, they provide the values of forecasted hourly electricity prices without 196 

any additional information. However, these DAEPF models that only give point forecasts can be 197 

inadequate for trading purposes because they do not show the uncertainty associated with the price 198 

forecasts, which is essential for risk-based market decisions. Point (spot) forecasts do not offer 199 

information to support trading associated with market risks. Market decisions based on point forecasts 200 

are suitable when the economic impact of the deviation (between forecast value and real value) is 201 

linearly dependent on the absolute value of the deviation. However, probabilistic price forecasting 202 

models are able to provide information regarding the uncertainty of the price forecasts. They have 203 

become essential models for making proper risk-based decisions when the magnitude of the price (or 204 

magnitude of the deviation) has a higher relative impact on more extreme price values, that is, when it 205 

is imperative to know the probability of occurrence of the different level of prices (or magnitude of 206 

deviations). 207 

 208 

1.2. Literature review 209 

 210 



DAEPF models centered on point (spot) forecasts are essentially based on classic time series 211 

models or computational intelligence models, although some models combine both approaches.  212 

Classic time series DAEPF models described in the literature use a wide variety of techniques [1]. 213 

Some works describe the application of only one technique [2], while others apply a set of techniques 214 

for developing several models and comparing their forecasting results. The techniques used include 215 

exponential smoothing [3], multiple regression [4, 5], time-varying regression [6, 7], Box-Jenkins and 216 

derived models [8-10], econometric models [11] and GARCH (Generalized Auto-Regressive 217 

Conditional Heteroskedasticity) [12, 13]. Usually, the simpler techniques are used to develop 218 

benchmark models for comparison purposes [14]. Computational intelligence DAEPF models are 219 

based principally on artificial neural networks [15-17], fuzzy systems [18, 19], and support vector 220 

machines (SVM) [20, 21]. Some of both families of DAEPF models need explanatory variables such 221 

as load demand, meteorological variables (mainly temperature), and wind or solar electric power 222 

production, the values of which, for the forecasting horizon, are obtained by means of other short-term 223 

forecasting models [22, 23]. Preprocessing techniques such as wavelet decomposition have been used 224 

to improve model performance [24], optimization methods have been used to tune the structure of the 225 

DAEPF model [25-27], or classifiers have been used as an additional module to forecast price spikes 226 

[28]. Combinations of forecasts from different DAEPF models have been studied, and reveal a more 227 

accurate and robust point forecast [5, 29]. Similar approaches, using advanced forecasting techniques, 228 

have been also applied in other electric energy sectors, such as load forecasting [30], wind power 229 

forecasting [31], solar power forecasting [32], or building energy demand forecasting [33]. 230 

 231 

Electricity market agents can need price forecasts for risk-based decisions in diverse situations. 232 

They can use probabilistic price forecasts for risk-based decisions by pondering the risk based on 233 

probability measures. The impact of these decisions can depend on the probability of having prices 234 

higher/lower than a threshold value. In this sense, probabilistic price forecasting models have an 235 

important added value compared with non-probabilistic price forecasting models. Probabilistic models 236 

also overcome the limitations of spot forecasts by allowing the generation of scenarios for the day-237 

ahead for several kinds of power-producers [34-38]. Some kinds of DAEPF probabilistic models have 238 

been identified in the literature [1] according to their output values: interval forecasts (or also known 239 

as prediction intervals), density forecasts, and threshold forecasts, although this last kind can be 240 

considered as a special instance of prediction intervals. 241 

 242 

Most of the early works describing DAEPF probabilistic models focused on prediction 243 

intervals, since estimating these can help utilities and independent power producers to submit effective 244 

bids with low risks [38]. The techniques utilized include support vector machines with heteroscedastic 245 

variance equation and the maximum likelihood estimation [39], an extreme learning machine with 246 

bootstrapping method [23] or with an estimation of the noise variance [40], delta and bootstrap 247 

methods [41], a recursive dynamic factor analysis [42], the variational heteroscedastic Gaussian 248 

process [43], and quantile regression averaging with principal component analysis [44]. The main 249 

application of threshold forecasting is related to demand-side management, where several data-mining 250 

techniques used as classifiers have been used [45, 46].  In spite of everything, interval and threshold 251 



forecasts only allow decisions related to the corresponding specific intervals or thresholds. However, 252 

density forecast, which is the subject of the probabilistic price forecasting models presented in this 253 

article, provides suitable probabilistic information for any risk-based decision usage.   254 

 255 

A much better approach to building DAEPF probabilistic models is the forecasting of the 256 

probability density function (PDF) or density forecasting. In any field of application, a density forecast 257 

of a random variable at some future time is an estimate of the probability distribution of the possible 258 

future values of that variable. On one hand, it gives a complete description of the uncertainty associated 259 

with a prediction and overcomes the main deficiency of a point forecast (from non-probabilistic 260 

models), which does not provide any information about the associated uncertainty [47]. On the other 261 

hand, obtaining an entire forecast density provides more complete information than single prediction 262 

intervals. However, there are only a few works that deal with the development of short-term 263 

probabilistic forecasting models based on PDFs for electric energy applications, such as load 264 

forecasting [48, 49], solar power forecasting [50, 51], wind power forecasting [52, 53], or electricity 265 

price forecasting [54, 55].   266 

 267 

Thus, the most interesting DAEPF probabilistic models (i.e., probabilistic price forecasting 268 

models for probabilistic forecasts of the day-ahead hourly price) are focused on probability density 269 

functions (PDFs); however there is a scarcity of probabilistic price forecasting models based on them. 270 

In the case of electricity price density forecast, Serinaldi [54] proposes the use of the Generalized 271 

Additive Models for Location, Scale, and Shape (GAMLSS) [56] to obtain the entire day-ahead 272 

electricity price distribution function; the explanatory variables used by the forecasting model are past 273 

prices, electricity loads (including the day-ahead forecasts, if available) and chronological information. 274 

Another approach is the one proposed by Jónsson et al. [55], where the densities for the day-ahead 275 

electricity prices are obtained using a time-adaptive quantile regression model and the approximation 276 

of the distribution tails. The forecasting model uses as input variables forecasts of spot electricity prices 277 

(provided by a spot DAEPF model), forecasts of system load and forecasts of wind power production. 278 

 279 

1.3. Objectives and characteristics of the models of this research and their application 280 
 281 
 282 

This article describes original Probabilistic Price Forecasting Models (PPFM models) for 283 

probabilistic forecasts of the day-ahead hourly price in electricity markets focused on probability 284 

density functions (PDFs) of Beta distributions. Main novel characteristics of PPFM models and their 285 

application are outlined in the following paragraphs.  286 

 287 

The PPFM models provide parametric probabilistic forecasts, represented by the PDF of a Beta 288 

distribution, for each hour of the forecast price (output variable). This parametric approach of the 289 

output variable provides significant advantages because it gives full information about the uncertainty 290 

of price forecasts useful for downstream risk-based decision-making tools. 291 

 292 



The extensive set of input variables of the PPFM models consists of large historic time series 293 

of hourly prices in previous days, regional-aggregated hourly power generations (hydropower 294 

generation, wind power generation, solar power generation and power cogeneration, nuclear power 295 

generation, combined cycle power generation and coal power generation), and hourly power demand 296 

in the previous day and in the previous week. Furthermore, this set of input variables also includes 297 

hourly time series records of forecasts of regional-aggregated hourly power demands, forecasts of wind 298 

power generation and forecasts of weather (hourly wind speed, temperature, and irradiation) in the 299 

region for the day-ahead as well as chronological data. The intrinsic uncertainties associated with price 300 

forecasts are influenced by these different kinds of explanatory price variables (input variables). These 301 

variables affect the expected value of price, as well as the price forecast uncertainty. 302 

 303 

The new PPFM models are based on a Nadaraya–Watson Kernel Density Estimator (NW-304 

KDE) approach [57, 58] using a suitable Gaussian KDE function for each one of its input variables, 305 

i.e. explanatory price variables. The NW-KDE approach applied to historical cases (historical data of 306 

explanatory price variables and the hourly price historical data), directly obtains the corresponding 307 

expected and variance values. They allow us to calculate, in a straightforward way, the essential 308 

parameters of the probability density function (PDF) of a Beta distribution that describes the behavior 309 

of the price variable for each forecasting hour. Then, this PDF function allows the expected value of 310 

the hourly price variable to be determined (i.e. point forecast of hourly price) as well as a variety of 311 

useful quantitative probabilistic results of the probabilistic forecast of each PPFM model. These 312 

parametric representations (of PDFs) by Beta distributions are advantageous (for downstream usage 313 

of the forecast uncertainty) when compared with other approaches. 314 

 315 

A new Reliability Indicator (RI) is introduced to assess the uncertainty associated with 316 

probabilistic price forecasts; the RI gives a quantitative measure (from 0% to 100%) of “reliability” of 317 

forecasts of PPFM models. This article also presents a novel representation of  “reliability diagram”, 318 

associated with the RI, which allows the evaluation of the performance of the PDF of Beta distributions 319 

to be carried out. “Forecast cases” that fall outside the limits of the PDF are identified by such suitable 320 

“reliability diagram”. 321 

 322 

The RI values for PPFM models in the real-life case study are also included in this article. Then, 323 
a  comparison of the PPFM model´s performances revealed that RI (“reliability”) values usually 324 

improved, and that MAE error values improved when more input variable types (chronological 325 

variables, price variables, power demand variables, weather forecast variables, and power generation 326 

variables) were considered in the PPMF models. 327 

 328 

An original procedure is used to calibrate the bandwidths of the kernel Gaussian functions 329 

involved in the NW-KDE approach. This procedure uses an iterative process to seek successive 330 

bandwidth values, for each explanatory variable, which in turn achieve a near optimal RI value for 331 

each “forecast case” (“new case”). 332 

 333 



The real-life case study of the Iberian Electricity Market (MIBEL) was used to satisfactorily 334 

test the PPFM models. As far as we know, this is the first time that probabilistic price forecasting 335 

models, based on the NW-KDE approach, have successfully been applied to the Iberian Electricity 336 

Market. In this article, firstly, suitable studies of input variable selection for PPFM models led to the 337 

determination of reasonable combinations of variables (grouped by their common characteristics). The 338 

selection process allowed us to carry out a systematic analysis of Mean Absolute Error (MAE) values 339 

of PPFM models in the real-life case study, in order to find the best input variable combination 340 

associated with the lowest MAE value, that is, to find the best PPFM model. Furthermore, these studies 341 

could determine the relative importance of each input variable. Secondly, a description of the main 342 

results of forecast examples of this best PPFM model is included in terms of hourly probability density 343 

functions of Beta distributions for hourly price forecasts, time series representations of price forecast 344 

uncertainty, expected and variance values of hourly price, and other valuable probabilistic information. 345 

Examples of other valuable information are quantiles and probabilities relative to given values of the 346 

price (probabilities of prices exceeding or failing to exceed a threshold value). This information can 347 

be used to assess the risk in trading operations in electricity markets.  348 

 349 

1.4. Contributions of this research   350 
 351 

From the above sub-sections in this Introduction, the novelty and contributions of this article 352 

are summarized as follows: 353 
 354 

 New PPFM models based on NW-KDE using Gaussian KDE functions for their input price 355 

explanatory variables. 356 

 Very extensive set of input variables of PPFM models consisting of large time series of hourly 357 

historical values of price, power generations, demands, and forecasted values of demands, wind 358 

speeds, temperatures, and irradiations, as well as chronological data. 359 

 Probability density functions of Beta distributions for the hourly prices of each PPFM model. 360 

 Reliability Indicator (RI) to assess the uncertainty associated with probabilistic price forecasts 361 

of each PPFM model.  362 

 Calibration procedure of bandwidths of the Gaussian functions of PPFM models. 363 

 Straightforward determination of expected values of hourly prices, variance values, quantiles, 364 

probabilities of prices exceeding or failing to exceed a threshold value, and time series 365 

representations of forecast uncertainty of each PPFM model. 366 

 Successful application of the new PPFM models to the Iberian Electricity Market (MIBEL). 367 

The first time that probabilistic price forecasting models based on NW-KDE are applied to 368 

MIBEL.  369 

 370 

The PPFM models, their PDF functions for hourly price forecasts and practical probabilistic 371 

information from such PDF functions can be useful for agents of the day-ahead electricity markets and 372 

the power industry. 373 
 374 



1.4. Structure of this article 375 

 376 

The structure of this article is as follows: Section 2 describes PPFM models for probabilistic 377 

price forecasts and the methodology, mainly in terms of the NW-KDE approach. Section 3 contains a 378 

description of the time framework and data for the PPFM models in the real-life case study. The 379 

application of such PPFM models and the corresponding results are presented in Section 4.  After the 380 

results, Section 5 proceeds to discuss them and depicts comparisons of performances of PPFM models 381 

from the point of view of MAE values and Reliability Indicator values. Finally, the conclusions of this 382 

article are presented in Section 6. 383 

 384 
2.  Probabilistic price forecasting models (PPFM models) 385 

 386 

The probabilistic forecasting models (PPFM models) presented in this article are based on the 387 

Nadaraya–Watson Kernel Density Estimator (NW-KDE), the fundamentals of which were proposed 388 

by Nadaraya and Watson [57, 58]. A KDE approach is a non-parametric approach to estimate the PDF 389 

of a random variable. KDE methods have been applied satisfactorily to obtain wind and solar power 390 

probabilistic forecasts [59-61]. 391 

 392 

The NW-KDE mathematical method used in our work is more complex than other KDE 393 

approaches, with the main difference being that it allows the parameter values of the PDF of a Beta 394 

distribution for the output variable (hourly price variable) to be obtained directly from the expected 395 

and variance values, calculated basically by the applying the NW-KDE approach to the historic data 396 

of explanatory price variables and the historic data of hourly prices. In this way, such PDF functions 397 

allow useful probabilistic quantitative information of the price variable behavior for each hour of the 398 

forecasts to be determined. 399 
 400 

The NW-KDE method was implemented in a novel NW-KDE probabilistic forecasting tool 401 

developed specifically for this research work, which also considered diverse advanced features. 402 

However, only essential aspects of the NW-KDE method used in the PPFM models are presented in 403 

this article due to reasons of simplicity. 404 
 405 

In this Section 2, a mathematical description of PPFM models is presented; later the kernel 406 

density estimation function utilized in these models is explained; and, lastly, parameters related to 407 

probabilistic price forecasting models are described.               408 
 409 

 2.1. Mathematical description of probabilistic price forecasting models 410 

 411 

Probabilistic price forecasting models consider a historical dataset composed of n cases, 412 

corresponding to past instants p (p = 1, 2, .... n ), of m price explanatory variables, x, and the 413 

corresponding dependent variable (hourly electricity price variable, y). This set of n historical cases, 414 



composed by hourly time series of the mentioned variables, constitutes the knowledge base dataset 415 

(matrix of knowledge) represented in (1). 416 

 417 
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   419 
The PPFM models assume that the neighborhood of a future generic case x1,new, …, xv,new, …, 420 

xm,new  for a future hour (new) can be assessed for each explanatory variable (dimension) v,  by a 421 

kernel density estimation function Kv (xv,p; xv,new, hv), where xv,new plays the role of the parameter of the 422 

center of the kernel function and hv corresponds to its bandwidth, that is, the width of activation of the 423 

kernel function in the neighborhood of the new case for the variable v. The kernel function Kv (xv,p; 424 

xv,new, hv) is a grade function, used to “select” mainly historical cases with values xv,p relatively “close” 425 

to each specified value of the variable xv,new, by “activation values” given by such kernel function. The 426 

“join activation” for all dimensions, that is, for all explanatory variables, corresponds to the product 427 

of the kernel functions in all dimensions v, computed by the expression  


m

v
vnewvpvv hxxK

1
,, ,; , that is, a 428 

product kernel [62, 63]. 429 

In order to gain a better understanding of the mathematical description of the PPFM models, 430 

an illustrative example is included in Fig. 1. Let us consider, for simplicity, that there is only one price 431 

explanatory variable (v=1), the power demand variable. In Fig. 1 the price explanatory variable has a 432 

value of 40.5 GWh for a future case (value xnew). A suitable kernel density estimation function (for 433 

example, the one shown in the figure) will be used to assess the neighborhood of xnew considering the 434 

historic dataset. As shown in Fig. 1, for such value of xnew, a limit value xnew,max of 42.5 GWh and a 435 

limit value xnew,min of 38 GWh can be adequately determined (by using an appropriate basic level of 436 

activation of the kernel density estimation function), for purposes of practical computations to be 437 

carried out later. These limits of the explanatory variable values lead to determine limits of the price 438 

values between ynew,max (32.2 €/MWh) and ynew,min (16.0 €/MWh).  439 

 440 

Coming back to the PPFM models, for the general situation of m explanatory variables and a 441 
new generic case x1,new, …, xv,new, …, xm,new for a future instant, let us consider that the element  newY442 

, associated to  the variable ynew (hourly price variable)  in the interval [ynew,min ; ynew,max],  is converted 443 
to the element  newY   referred to a variable newy  between 0 and 1 by a regular min-max standardization.  444 

 445 
The expected value of  newY  , for a new (future) instant, can be estimated by the weighted 446 

average of all values py  between 0 and 1 (corresponding to historical values yp belonging to the 447 

interval [ynew,min ; ynew,max]), where the weights are the kernel activation values (“join activation” 448 

values).  449 



 450 
Fig. 1. Illustrative example. 451 

 452 
Let us consider that the element  newX is associated to v price explanatory variables xv,new. The 453 

expected value of  newY   is the conditional expected value  newnew XYE   that can be estimated by (2), 454 

[63],  455 

       456 

 
 

  

 


 



 





















maxnewn

minnewnp

m

v
vnewvpvv

maxnewn

minnewnp

m

v
vnewvpvvp

newnew

hxxK

hxxKy

XYE
,

, 1
,,

,

, 1
,,

,;

,;

       (2) 457 

 458 
where the number  n-new,min  is related to ynew,min and the number  n-new,max  is related to ynew,max.  459 

 460 
The approach used to represent  newY  , standardized in the interval 0,1, allows us to obtain 461 

estimation values of the parameters new and new of the corresponding probability density function of 462 
a Beta distribution, as explained later, by using the value of  newnew XYE   according to (2), and the 463 

variance  newnew XYV   according to (3), [64].  464 

 465 

        22
newnewnewnewnewnew XYEXYEXYV                (3) 466 

 467 

Thus, the application of the NW-KDE method to the expected value of the square of the 468 
dependent variable    newnew XYE 2  and to the square of the expected value   2newnew XYE  , leads to 469 

obtain the variance  newnew XYV   that can be estimated by (4). 470 

 471 
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 473 
The probability density function ),;( newnewnewyf   of a Beta distribution supported in the 474 

interval 0,1, for newy  in the interval 0,1, is given by (5), [65, 66], 475 

 476 

 
11 )1(
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),;(   newnew
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  (5) 477 

 478 
where B(new, new) is a known normalization “constant” (if fixed values of new, new) [65], and the 479 
estimated values of the parameters new and new, corresponding to the new instant, are obtained from 480 
(6) and (7) using the method of moments [65].  481 
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 486 

The expected value of the hourly price, i.e., the point forecast of hourly price value, with prices 487 

values expressed in €/MWh in the interval ynew,min ; ynew,max, can be obtained by using a probability 488 

density function  fnew(ynew ; new, new, ynew,min ; ynew,max) of a Beta distribution, supported in such interval 489 

ynew,min ; ynew,max, where  ynew represents the variable associated to the hourly price. Thus the expected 490 

value of the hourly price is given by (8), [65, 66]. 491 
 492 
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 494 

Lastly, a variety of useful quantitative probabilistic information can be also obtained from the 495 

mentioned probability density function for the price forecast, as presented in Section 4.2. 496 

 497 

 2.2. Kernel density estimation function 498 

 499 

Different kinds of kernel functions can be used. The Gaussian function is the most common 500 

and practical function to be applied to each dimension (each explanatory variable) v by (9).  501 

 502 
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 504 

Notice that xv,p plays the role of the independent variable in the kernel Gaussian function Kv 505 

(xv,p; xv,new, hv) and xv,new and hv acts as parameters. There is one kernel function for each variable v, 506 

and it is applied to each value xv,p of the historical cases.  507 

 508 

Observe that xv,new is set as the center of the Gaussian function that is used to assess the 509 

neighborhood of xv,new (i.e., mainly historical cases p with values xv,p relatively “close” to xv,new). 510 

Furthermore hv is the Gaussian RMS width, or the Gaussian standard deviation parameter, and it 511 

represents the bandwidth of the kernel.  512 

 513 

2.3. Parameters related to probabilistic price forecasting models               514 

 515 

As mentioned at the beginning of this Section 2, the NW-KDE method was implemented in a 516 

novel NW-KDE probabilistic forecasting tool, which contains diverse parameters. Some of these 517 

parameters have to be calibrated in order to achieve an adequate performance of the PPFM models.  518 

 519 

First, descriptions of parameters are provided (Section 2.3.1); and afterwards, a summary of a 520 

complex procedure of bandwidths calibration is briefly outlined to obtain satisfactory values of 521 

bandwidths (Section 2.3.2).  522 

 523 

2.3.1. Descriptions of parameters    524 
 525 

When working with a kernel estimator it is necessary to select the kernel function Kv and the 526 

smooth parameter or bandwidth hv, for each explanatory variable (dimension v). The selection of Kv is 527 

a relatively less important problem, since different kernel functions that produce good results, can be 528 

utilized. In this article, the Gaussian kernel density function is applied as previously indicated in 529 

Section 2.2. An inconvenience of dealing with the Gaussian kernel density function is that if it is not 530 

limited, then it requires intensive computation for the historical dataset of cases shown in (1). In order 531 

to accelerate the forecasting computation, a parameter called standardized basic level of activation is 532 

introduced (in the probabilistic price forecasting models), bla_std, for a standardized function, Kv_std, 533 

which corresponds to the function Kv multiplied by hv√2π. Thus, the basic level of activation, bla, 534 

which corresponds to bla_std divided by hv√2π, defines the minimum level of activation in the Gaussian 535 

kernel function Kv. Theoretically the parameter bla_std could be a value between 0 and 1, with a wide 536 

knowledge base activation for low values of bla_std and straiten knowledge base activation for values 537 

close to 1. The value of bla_std, or the corresponding bla, defines the values of xv,new_min  and xv,new_max  538 

by using the inverse of the cumulative distribution function CKv, of the Gaussian kernel function Kv, 539 

through  (10) and (11).  540 
 541 
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 544 
In comparison with the selection of the type of kernel function, the choice of the bandwidths, 545 

hv (for each explanatory variable v), is more important because if the bandwidth values are relatively 546 

small, then we will obtain an underestimation of the dispersion of the estimated uncertainty of 547 

probabilistic price forecasts, with a risk of over-fitting the expected value of the hourly price (i.e., the 548 

point forecast of hourly price value) obtained from the probabilistic forecast. On other hand, if the 549 

bandwidth values are relatively large, then the dispersion of the estimated uncertainty will be 550 

excessively wide, with poor accuracy for the uncertainty of probabilistic forecasts and also for the 551 

expected value of the hourly price. The optimal bandwidth for each explanatory variable would be the 552 

one that would optimize a suitable indicator of uncertainty of probabilistic price forecasts. We select 553 

the RI (Reliability Indicator), presented later in Section 4.3.   554 
 555 

The NW-KDE probabilistic forecasting tool can be applied with a dynamic iterative process to 556 

seek a value of the bandwidth hv, for each explanatory variable v, which achieves a good value (near 557 

the optimal value) of the indicator of uncertainty of probabilistic forecast in the neighborhood of a new 558 
case , , ⋯ , , ⋯ , , . This dynamic iterative calibration process starts from relatively 559 

large bandwidth values, and if the indicator value improves during such a process, then all bandwidths 560 

are decreased, as described in Section 2.3.2, by using a factor Fchg, belonging to the interval 0,1]. 561 

 562 

An inconvenience of this dynamic iterative process would be that in some situations, the 563 

decrease of bandwidths could be excessive when activating only a very small or null number of points 564 

(cases), which would create a mathematical problem of statistical representativeness with poor 565 

representation of the probabilistic forecasting output. This inconvenience would be particularly 566 

important if the historical dataset of cases is small or if the number of explanatory variables is very 567 

large. In order to avoid this inconvenience, the NW-KDE probabilistic forecasting tool sets a parameter 568 

called “number of points”, Np, which corresponds to the minimum number of activated points from 569 

the historical dataset of cases shown in (1) , tolerable to be statistically representative for probabilistic 570 

forecasts.  571 
 572 

2.3.2. Calibration of bandwidths  573 
 574 

The calibration (optimization) of bandwidths hv is carried out for each new case, basically by 575 
adjusting bandwidths for a region in the neighborhood of such a case , , ⋯ , , ⋯ , , , 576 

by following the stages:  577 
 578 

Stage 1.- The iterative process starts by using a relatively large bandwidth defined for each 579 

dimension (explanatory variable v), that is 10% of (xv_max - xv_min), where xv_max represents the 580 

maximum value of xv of the historical dataset of cases shown in (1) and xv_min represents the 581 

minimum value of such xv . 582 



    583 

Stage 2.- With the already defined parameters and the current values of the smoothing parameters 584 

(bandwidths), the NW-KDE probabilistic forecasting tool is applied to the historical dataset of 585 

cases (the historical dataset was indicated in (1)), which determines a set of activated points, 586 

named the “forecast set”. 587 
 588 

Stage 3.- There is a verification of the number of activated points, in accordance with the 589 

following conditions: 590 
 591 

3.1.- If it is lower than Np, then all the values of hv are enlarged by the factor Fchg, that is, the 592 

resulting enlarged values are hv·(1+Fchg). Afterwards, return to Stage 2. 593 

3.2.- If it is not lower than Np, then continue to Stage 4. 594 
 595 

Stage 4.- In the “forecast set”, select the Np points that are the “closest ones” to the new case, that 596 

is, the Np points with the highest value of the “joint activation” computed by the expression597 

 


m

v
vnewvpvv hxxK

1
,, ,; . This set of Np points is named the “validation set” and obviously it is a subset 598 

of the “forecast set”.   599 
 600 

Stage 5.- By applying equations (6) and (7) to the “forecast set”, compute the parameters  and 601 

 of the “output forecast” for the new case. From this stage, the “output parameters” (new, new, 602 

ynew,min, ynew,max) are obtained. 603 
 604 

Stage 6.- For each case k of the “validation set”, obtained  in Stage 4, calculate the fitness of the 605 

historical  value (yk) in the “output forecast” which is represented by the  parameters (new, new, 606 

ynew,min, ynew,max). The fitness value is computed by using the Beta cumulative distribution function 607 

Fnew (new, new, ynew,min, ynew,max), which obtains a value in the interval [0,1]. Afterwards, the 608 

fitness values of the Np cases in the “validation set” are used to determine the value of the RI  609 

(Reliability Indicator), via the process presented in Section 4.3. 610 
 611 

6.1.- If it is the first iteration or if the value of the RI, for the “validation set”, is better than the 612 

one obtained in the previous iteration, then all the values of  hv are reduced by the factor Fchg, 613 

that is, the resulting reduced values are hv·(1-Fchg). Afterwards, return to Stage 2.  614 

6.2.- If it is not the first iteration and if the value of the RI, for the “validation set”, does not 615 

improve with regards to the one of the previous iteration, then the process of calibration 616 

finishes. 617 

 618 
A simplified flow chart of the proposed methodology associated to the development of the 619 

PPFM models is shown in Fig. 2.  620 

 621 



Fig. 2. Simplified flow chart of the proposed methodology associated to the development of the PPFM models. 

 622 

3.  Time framework and data for probabilistic price forecasting models 623 

As abovementioned in Section 1, the real-life case study of the Iberian Electricity Market 624 

(MIBEL) was used to satisfactorily test the PPFM models, although these models can be applied to 625 

any other day-ahead electricity market. The MIBEL comprises different markets: the derivatives 626 

exchange market, managed by the company OMIP [67], and the daily and intraday markets, both 627 

managed by the company OMIE [68]. The daily market is a marginal auction market structured in a 628 

daily session, where next‐day hourly sale and electricity purchase transactions are carried out.  629 

 630 

Section 3.1 describes the time framework for the PPFM models. And afterwards, data 631 

corresponding to the real-life case study for PPFM models is shown in Section 3.2.  632 

3.1. Time framework for probabilistic price forecasting models 633 

PPFM models use input (price explanatory) variables that correspond to recorded hourly time 634 

series. Fig. 3 shows the time framework used for PPFM models. The day-ahead hourly price forecast 635 
d

tDhDp ,,1
ˆ   for each hour h of the 24 hours in day D+1 (output in Fig. 3) is obtained at hour t of the day 636 

D. This hour t of day D can be any moment before the closing of the daily market session and after the 637 

instant in which the variables corresponding to forecasted wind power generation and forecasted 638 

demand for the day D+1 are known.   639 

 640 
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 641 
Fig. 3. Time framework of probabilistic price forecasting models. 642 

The price pD-6,h 
for hour h of day D-6, and the price pD,h for hour h of the day D, are inputs to 643 

forecast the price for the hour h of day D+1. Inputs are also the day of the week wD+1, the hour h of 644 

day D+1, and the weather forecasts for hour h of day D+1 (obtained at the first hours of day D for the 645 

geographical region corresponding to the electric power market), that is, regional weighted forecasted 646 

hourly temperatures tDhDT ,,1
ˆ

 , regional weighted forecasted hourly irradiations tDhDI ,,1
ˆ

  and regional 647 

weighted forecasted hourly wind speeds tDhDv ,,1ˆ  .  648 

 649 
Fig. 3 also includes other diverse inputs: hydropower generation HGD-1,h, solar power 650 

generation and power cogeneration SGD-1,h, coal power generation CGD-1,h, combined cycle power 651 

generation CCGD-1,h, wind power generation WGD-1,h,  nuclear power generation NGD-1,h  and power 652 

demand LDD-1,h at hour h of day D-1; power demand LDD-6,h at hour h of day D-6; and wind power 653 

generation forecast tDhDGW ,,1
ˆ

  and power demand forecast
tDhDDL ,,1

ˆ
  for hour h of day D+1. 654 

3.2. Data for probabilistic price forecasting models 655 

Different kinds of data have been considered for development of PPFM models. The data is as 656 

follows:  657 

 658 

a. Chronological data (hour, day of the week). 659 

tDhDDL ,,1
ˆ



tDhDGW ,,1
ˆ



d
tDhDp ,,1ˆ 



b. Actual hourly data prices of the electricity market (MIBEL), available from the market operator 660 

OMIE [68].  661 

c. Actual hourly data of the power system: power demand, hydropower generation, wind power 662 

generation, cogeneration and solar power generation, coal power generation, nuclear power 663 

generation, combined cycle power generation and power exchanged with France. This data was 664 

obtained by aggregating a very large amount of information from the websites of REE, the Spanish 665 

Transmission System Operator (TSO) [69], and REN, the Portuguese TSO [70]. 666 

d. Data of hourly forecasts of the power system: wind power generation forecasts and power demand 667 

forecasts. These forecasts were obtained by aggregating forecast information from the mentioned 668 

TSOs. 669 

e. Data of hourly weather forecasts: weighted average temperature, solar irradiance and wind speed. 670 

These forecasted values were obtained with the NWP (Numerical Weather Prediction) mesoscale 671 

model WRF NMM [71], initialized with the forecasts provided by the global NWP model GFS 672 

[72]. The weighted average temperature was obtained as a weighted average of the temperature 673 

forecast for near to 250 points covering the main demand points in all the regions of the Iberian 674 

Peninsula (Spain and Portugal); the weights were proportional to the aggregated power demands 675 

of each region. Similarly, the weighted average solar irradiance and wind speed were obtained as 676 

the weighting average of hourly solar irradiances and wind speeds in nearly 750 points covering 677 

all regions of the Iberian Peninsula; in this case the weights were proportional to the regional 678 

installed capacity in solar based plants and in wind farms, respectively.  679 

 680 

The set of price explanatory variables of the PPFM models is shown in Table 1. This set 681 

includes variables of the five kinds of data described above.  682 

 683 
  684 



Table 1.  Price explanatory variables of PPFM models.   685 

Variable Description 
V1 hour 

V2 week day 

V3 hourly price D 

V4 hourly  price D-6 

V5 hourly power demand D-1 

V6 hourly power demand D-6 

V7 forecasted hourly power demand D+1 

V8 forecasted hourly temperature D+1 

V9 forecasted hourly wind speed D+1 

V10 forecasted hourly irradiance D+1 

V11 forecasted hourly wind power generation D+1 

V12       hourly wind power generation D-1 

V13 hourly hydropower generation D-1 

V14 hourly cogeneration and solar power generation D-1 

V15 hourly coal power generation D-1 

V16 hourly nuclear power generation D-1 

V17 hourly combined cycle power generation D-1 

 686 

The data corresponds mainly to years 2012 and 2013. It was divided into an in-sample dataset, 687 

used to create PPFM models and an out-sample dataset used for testing them. In order to have a good 688 

representation of the different price behaviors along the year, the out-sample dataset was composed of 689 

complete weeks extracted along the two years of data. The in-sample and out-sample datasets were 690 

defined as follows:    691 
 692 

i. In-sample dataset: all the hours of the days in 2012 (from February 2nd) and 2013 (to 693 

December 4th), except those included in the out-sample dataset, totaling 13512 cases 694 

(hours). This in-sample dataset corresponds to the knowledge base dataset represented in 695 

(1). 696 

 697 

ii. Out-sample dataset: all the hours of the weeks with numbers 5, 10, 15, 20, 25, 30, 35, 40, 698 

45, 50 in 2012, and weeks number 2, 7, 12, 17, 22, 27, 32, 37, 42, 47 in 2013; a total of 699 

3360 cases (hours).  700 

 701 

The in-sample and out-sample datasets were characterized by similar statistical parameters.  702 

 703 
4. Application of probabilistic price forecasting models and results 704 

 705 



Probabilistic price forecasting models (PPFM models) were applied to the abovementioned 706 

real-life case study using combinations of the explanatory variables of Table 1 and the data presented 707 

in Section 3.2. 708 
 709 

In this Section 4, a summary of input variable selection studies for PPFM models are presented 710 

in order to determine the best combination of input variables that leads to the best PPFM model with 711 

the lowest Mean Absolute Error (MAE) value; later, detailed results of the best PPFM model for hourly 712 

price forecasts are described; lastly a Reliability Indicator (RI) is introduced to assess the uncertainty 713 

of probabilistic price forecasts: the RI provides a quantitative measure (between 0% and 100%) of  714 

“reliability” of the forecasts provided by the PPFM models. 715 
 716 

4.1 Selection of input variables for probabilistic price forecasting models 717 

 718 

A summary of variable selection studies for PPFM models is shown in this Section, 719 

corresponding to reasonable combinations of input variables (grouped by their common 720 

characteristics) in order to find the best PPFM model that corresponds to the input variable 721 

combination that achieves the lowest Mean Absolute Error value.  722 
 723 

The error indicator Mean Absolute Error (MAE) was calculated, for probabilistic forecasting 724 

models, according to (12), 725 
 726 
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 728 

where N is the number of elements (or number of forecasting hours) in the out-sample dataset, Preal_T  729 

is the real hourly price value for the hour T, and Pforecast_T is the expected value of hourly price (point 730 

forecast of hourly price) of the PPMF model for the hour T.  731 
 732 

The MAE errors for PPFM models (PPFM1 to PPFM23), with different input variables, are 733 

presented in Table 2. The values of the Reliability Indicator of Table 2 will be commented upon later. 734 

The selection of variables follows an ordered analysis, such that only some PPFM models are presented 735 

in the table for conclusive purposes. The construction of Table 2 corresponds to a selection process 736 

with the following sequence:   737 
 738 

a. Models PPFM1 to PPFM3 for chronologic variables selection; 739 
b. Models PPFM4 to PPFM6 for price variables selection;  740 
c. Models PPFM7 to PPFM10 for power demand and forecasted power demand variables 741 

selection; 742 
d. Models PPFM11 to PPFM16 for forecasted weather and forecasted wind generation 743 

variables selection; and 744 
e. Models PPFM17 to PPFM23 for power generation variables selection. 745 

 746 



Models PPFM1 and PPFM2 are two first elemental models that lead the highest MAE errors 747 

of the studied models shown in Table 2. PPFM3 is a simple baseline model with a MAE error value 748 

of 9.01 €/MWh.  749 
 750 
 751 

Table 2. PPFM models and their MAE and Reliability Indicator values. 752 
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PPFM1 X                 9.78 78.51 

PPFM2  X                10.40 75.25 

PPFM3 X X                9.01 82.51 

P
ri

ce
 PPFM4 X X X               7.73 80.61 

PPFM5 X X  X              9.09 79.33 

PPFM6 X X X X              7.70 82.38 

D
em

an
d 

PPFM7 X X X X X             7.58 80.92 

PPFM8 X X X X  X            7.60 81.86 

PPFM9 X X X X   X           7.57 81.21 

PPFM10 X X X X X  X           7.48 82.98 

W
ea

th
er

 PPFM11 X X X X X  X X          7.48 83.61 

PPFM12 X X X X X  X  X         6.16 83.39 

PPFM13 X X X X X  X   X        7.52 83.17 

PPFM14 X X X X X  X X X         6.04 84.92 

P
ow

er
 G

en
er

at
io
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PPFM15 X X X X X  X X X  X       5.81 83.53 

PPFM16 X X X X X  X X   X       5.65 85.07 

PPFM17 X X X X X  X X   X X      5.59 84.47 

PPFM18 X X X X X  X X   X  X     5.58 85.25 

PPFM19 X X X X X  X X   X   X    5.63 84.84 

PPFM20 X X X X X  X X   X    X   5.62 85.75 

PPFM21 X X X X X  X X   X     X  5.60 84.11 

PPFM22 X X X X X  X X   X      X 5.62 83.65 

PPFM23 X X X X X  X X   X  X  X X X 5.55 85.64 

 753 
If variable V3 (hourly price D) is added to those used by model PPFM3, leading to model 754 

PPFM4, then the MAE error decreases to 7.73 €/MWh; and model PPFM6 obtains an error of 7.7 755 

€/MWh when including the price D-6 variable (V4) in model PPFM4. 756 
 757 

The inclusion of variable V5 (hourly power demand D-1) in model PPFM6 slightly reduces the 758 

MAE error to 7.58 €/MWh (model PPFM7). Additionally, if variable V7 (hourly forecasted power 759 



demand D+1) is included in model PPFM7, the MAE error is reduced to 7.48 €/MWh (model 760 

PPFM10). 761 
 762 

From the point of view of the set of models PPFM11 to PPFM14, compared to model PPFM10, 763 

the forecast wind speed variable (V9) in model PPFM12 obtains a MAE error of 6.16 €/MWh. 764 

Furthermore adding the forecasted temperature variable (V8) in model PPFM14 leads to a slightly 765 

better error of 6.04 €/MWh. 766 
 767 

The forecasted wind power variable (V11) added to model PPFM14 achieves an error of 5.81 768 

€/MWh (model PPFM15). Since variables V9 and V11 have collinear information, the exclusion of 769 

variable V9 in model PPFM15 leads to a slightly better error of 5.65 €/MWh (model PPFM16). 770 
 771 

Models PPFM17 to PPFM22 allow the evaluation of the improvement in the MAE error by 772 

adding variables V12 to V17 (power generation variables D-1). Variable V13 (hydropower generation 773 

D-1) is the one that achieves a lower error, 5.58 €/MWh in model PPFM18. The inclusion of variables 774 

V15 to V17 (thermal power generation D-1) in the previous model PPFM18 results in the best 775 

performance of PPFM models (model PPFM23), reaching a MAE error value of 5.55 €/MWh. 776 

Therefore, among models PPFM1 to PPFM23, the best PPFM model is PPFM23. 777 
 778 

Notice that there are five families of PPFM models (which correspond to the five families of 779 

types of price explanatory variables): i) models PPFM1, PPFM2 and PPFM3, containing chronological 780 

variables; ii) models PPFM4, PPFM5 and PPFM6, which include price variables (and chronological 781 

ones); iii) models PPFM7 to  PPFM10, which contain demand variables (and price and chronological 782 

ones); iv) models PPFM11 to  PPFM14, which take into account weather forecasting variables (and 783 

demand, price and chronological variables); and v) PPFM15 to PPFM23, which include generation 784 

variables (and weather forecasting, demand, price and chronological variables). 785 
 786 

Lastly, observe that, from the point of view of the MAE error values in Table 2, the best model 787 

among models PPFM1, PPFM2 and PPFM3 is model PPFM3.  MAE errors of models PPFM4, PPFM5 788 

and PPFM6 in Table 2, determine that the best model is PPFM6. The best model, upon analyzing MAE 789 

errors of models PPFM7 to PPFM10, is model PPFM10. Among the models PPFM11 to PPFM14, the 790 

best model is PPFM14. Lastly the best model upon studying MAE errors of models PPFM15 to 791 

PPFM23, is model PPFM23. Thus, the best models of each of the five families of probabilistic price 792 

forecasting models are models PPFM3, PPFM6, PPFM10, PPFM14 and PPFM23. 793 

 794 

4.2 Results of the best probabilistic price forecasting model PPFM23 795 
 796 

Values of the input variables used in model PPFM23 (the best probabilistic price forecasting 797 

model among models PPFM1 to PPFM23) for three forecasts of hourly price are shown in Table 3, as 798 

well as output (results) values, quantiles and the real price values. First forecast (Forc1) corresponds 799 

to the nineteenth hour on a Sunday (18:00 to 18:59 on May 26th, 2013), on a day without significant 800 

renewable generation but with relatively low prices on the previous day, resulting in a normal price at 801 



a time like this on a Sunday. Second forecast (Forc2) refers to the twenty-third hour on a Thursday 802 

(22:00 to 22:59 on May 30th, 2013), on a working day but with significant wind and hydro generation, 803 

resulting in a relatively low price at a time like this on a Thursday. Third forecast (Forc3) was obtained 804 

for the eleventh hour on a Monday (10:00 to 10:59 on October 14th, 2013), on a working day with low 805 

wind and hydro generation and with relatively high prices on previous days, resulting in a high price 806 

at a time like this on a Monday. 807 
 808 

Thus, the expected values of hourly price (i.e. point forecasts of price) obtained from the model 809 

PPFM23 correspond to price values that are relatively close to real prices values, since the percentages 810 

of error were 1.6%, -6.6% and -0.7% for the forecasts Forc1, Forc2 and Forc3, respectively (Table 3), 811 

in which such error percentages were calculated using the difference between expected and real price 812 

values with respect to the real ones. 813 
 814 

In Table 3, the variance values correspond to a comparatively higher dispersion of the 815 

probability density functions of forecasts Forc1 and Forc2, and to a relatively svelter probability 816 

density function of the forecast Forc3. 817 
 818 

Table 3. Forecasts from the probabilistic price forecasting model PPFM23 819 
  Forc1 Forc2 Forc3 

Input 
variables 

V1 hour (0-23h) 18 22 10 
V2 week day (1-7) 1 5 2 
V3 price D (€/MWh) 30.86 46.20 74.20 
V4 price D-6 (€/MWh) 52.76 51.10 68.96 
V5 power demand D-1 (MWh) 29457 36760 26392 
V7 forecasted power demand D+1 (MWh) 35055 34732 36963 
V8 forecasted temperature D+1 (ºC) 16.3 18.1 15.4 
V11 forecasted wind power D+1 (MWh) 7433 11979 8467 
V13 hydropower generation D-1 (MWh) 2093 8081 1200 
V15 coal power generation D-1 (MWh) 4277 4755 8017 
V16 nuclear power generation D-1 (MWh) 4691 4077 5994 
V17 combined cycle power D-1 (MWh) 1768 2029 2612 

Real value Real price (€/MWh) 47.23 46.75 59.05 

Outputs 

Expected value of price (€/MWh) 47.97 43.68 58.66 
Variance (€/MWh)2 19.22 31.33 9.81 
Parameter  5.739 3.532 3.165 
Parameter  6.534 6.694 2.139 
Minimum price (€/MWh) 33.00 30.06 49.10 
Maximum price (€/MWh) 65.01 69.50 65.13 
Percentage error (%) 1.6 -6.6 -0.7 

Quantiles 

Quantile Q10 (€/MWh) 42.25 36.64 54.31 
Quantile Q25 (€/MWh) 44.83 39.50 56.42 
Quantile Q50 (€/MWh) 47.91 43.27 58.87 
Quantile Q75 (€/MWh) 51.05 47.45 61.10 
Quantile Q90 (€/MWh) 53.77 51.31 62.70 

 820 

In Table 3, values of results (parameters  and , and maximum and minimum price) determine 821 

probability density functions (corresponding to Beta distributions), which allow a variety of useful 822 

information to be obtained, such as quantile representations and probability calculations. For instance, 823 

we can directly answer the question: “What are the probabilities that electricity prices will be higher 824 



than 52 €/MWh?”; they are 19%, 8% and 98% for the forecasts Forc1, Forc2 and Forc3, respectively. 825 

These probability density functions can also be used to obtain quantiles. As such, Table 3 displays 826 

quantiles Q10, Q25, Q50, Q75 and Q90 for the three forecasts of hourly price. Observe that quantile 827 

Q50 is relatively close to the expected hourly price value. Furthermore, such quantiles are also going 828 

to be shown later, in time series representations of the forecast uncertainty, throughout two weeks (Fig. 829 

4 and Fig. 5).  830 

 831 

Fig. 4 shows the representation of the probability density functions for the three probabilistic 832 

price forecasts Forc1, Forc2 and Forc3. The probability density function (PDF) for forecast Forc1 is 833 

more symmetrical (the value of the parameter  is relatively close to that of the parameter ). On one 834 

hand, the PDF function for forecast Forc2 is slightly right tailed because of the higher value of the 835 

parameter  with respect to that of the parameter . On other hand, the PDF function for forecast Forc3 836 

is slightly left tailed because of the higher value of parameter  in comparison with that of the 837 

parameter . It is also possible to verify that the real values of the price are “inside” the probability 838 

density functions for these forecasts: more specifically, the real price values are situated within the 839 

percentiles 44%, 71% and 52% for forecasts Forc1, Forc2 and Forc3, respectively. 840 
 841 

 842 
Fig. 4. Probability density functions for forecasts of hourly price. 843 

 844 

Lastly, Fig. 5 and Fig. 6 give results (time series representations of the forecast uncertainty) 845 

from the probabilistic price forecasting model PPFM23 for week number 22 in May 2013, and for 846 

week number 42 in October 2013, showing quantiles and also real prices. 847 
 848 
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 849 
 850 

Fig. 5. Probabilistic price forecasts for week number 22 in May 2013 851 
 852 

 853 
 854 

Fig. 6. Probabilistic price forecasts for week number 42 in October 2013 855 
 856 
4.3 Indicator of probabilistic price forecast uncertainty of PPFM models  857 

 858 

The accuracy of explainable information of the forecasts of the PPFM models can be evaluated 859 

based on deviations of the real price values with respect to the expected values of the hourly price 860 

(point forecast of hourly price) from such models, by using appropriate performance error indicators 861 

as the indicator MAE above mentioned.  862 
 863 

Indicators of uncertainty appropriate for probabilistic price forecasts have to be able to evaluate 864 

the accuracy of the forecasts of probabilistic forecasting models from the point of view of the forecast 865 

uncertainty. In this aspect, a suitable reliability diagram can be used to analyze the “reliability” 866 

associated to forecasts of PPFM models. 867 

 868 

Fig. 7 shows a reliability diagram associated to an example of forecasts of the probabilistic 869 

model PPFM23. In the vertical axis of the figure, the diagram gives the frequency of the events 870 

(forecasted price occurrences) for the cases of the out-sample dataset, in each partition of the 871 

“normalized” scale (between 0 and 1) of fitness values of price, that is shown in the horizontal axis. 872 

The expected value of the hourly price, for each new case q of the out-sample dataset, is obtained by 873 

using the parameters (new_q, new_q, ynew_q,min, ynew_q,max) of a probability density function (PDF) of a 874 

Beta distribution. Afterwards, the fitness value of the corresponding historical value of the hourly price 875 

(yq) is calculated. This fitness value is computed by using the Beta cumulative distribution function 876 



Fnew_q (yq; new_q, new_q, ynew_q,min, ynew_q,max), which obtains a value in interval [0,1], to be situated in 877 

the horizontal axis of Fig. 7. These fitness values are classified in the twenty partitions, with intervals 878 

of 0.05. The twenty partitions presented in intervals of 0.05, on the horizontal axis of the figure, have 879 

an ideal frequency (“target frequency”) of 5%. Since these partitions correspond to a bounded interval 880 

0, 1, the target frequency for the two additional partitions outside such interval must be 0%. Fig. 7 881 

shows that there is about 2% of price occurrences (events) in the partition corresponding to indication 882 

“˂ MIN”, i.e. below the interval 0, 1, and there is about 3% of price occurrences in the partition 883 

corresponding to indication “> MAX”, i.e. above such interval. Most of the partitions between 0.05 884 

and 0.35 on the horizontal axis correspond to frequencies of price occurrences that are clearly below 885 

the target frequency. In the partition 0.95-1.00, obviously the frequency of price occurrences is above 886 

the target frequency. 887 

 888 

A suitable indicator to evaluate the “reliability” value associated to forecasts of PPFM models, 889 

the so-called Reliability Indicator, RI, was introduced. It gives a measure related to the average 890 

normalized difference between the observed frequencies and target frequency, according to (13), 891 
 892 
 893 
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 895 

where  fobs,i  and ftar,i  are the observed frequencies (in per unit) and the target frequency (in per unit) for 896 

the interval i ; and NQ is the total number of partitions (intervals).  897 
 898 

 899 
Fig. 7. Reliability diagram example from the probabilistic price forecasting model PPFM23. 900 

 901 
The reliability diagram of Fig. 7, obtained from an example of forecasts of the model PPFM23, 902 

corresponds to a value of the indicator RI of 84.2%. The values of the RI for probabilistic models 903 

PPFM1 to PPFM23, applied to price forecasts using the data of Section 3.2, are given in Table 2. 904 
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Observe that the best model PPFM23, which achieved the lowest MAE error, obtained one of the 905 

highest RI values. 906 
 907 
5.  Discussion  908 

 909 

As indicated in Section 4, probabilistic price forecasting models PPFM3, PPFM6, PPFM10, 910 

PPFM14 and PPFM23, are the best models of each of the five families of PPFM models. 911 
 912 

Fig. 8 shows values of two indicators (the MAE and the RI) for forecasts of the probabilistic 913 

price forecasting models PPFM3, PPFM6, PPFM10, PPFM14 and PPFM23, using the data of Section 914 

3.2. In Fig. 8, the MAE error improves (decreases) as more types of input variables (chronological 915 

variables, price variables, power demand variables, forecasted weather variables, and power generation 916 

variables) are included in PPFM models: the integration of price variables in model PPFM6  (variables 917 

not included in model PPFM3) and the integration of meteorological variables in model PPFM14 918 

(variables not included in model PPFM10) represent the information that causes a greater improvement 919 

of the MAE indicator. The integration of demand variables in model PPFM10 (variables not included 920 

in model PPFM6) constitutes the information that causes a comparatively lower improvement of the 921 

MAE indicator. 922 
 923 

Fig. 8 shows that the RI (indicator used to assess the uncertainty associated to probabilistic 924 

price forecasts) improves as more types of explanatory input information (chronological information, 925 

prices, power demands, forecasted weather information, and power generations) are included in PPFM 926 

models, with the exception of the inclusion of price information in model PPFM6 (information not 927 

included in model PPFM3), since in this case the RI does not increase. The most important 928 

improvement in the RI is obtained when including the forecasted weather information in model 929 

PPFM14 (information not included in model PPFM10). 930 

 931 

Therefore, the MAE error values improved and the RI (“reliability”) values habitually also 932 

improved as more types of input variables (chronological variables, price variables, power demand 933 

variables, forecasted weather variables and power generation variables) were included in such PPFM 934 

models.  935 

 936 



  937 
Fig. 8. Comparison of performances of probabilistic price forecasting models. 938 

 939 
6. Conclusions   940 

Hourly price forecasts for electric energy, in an electricity market, constitutes very useful 941 

information if known in advance, because any agent involved in such market can use such information 942 

to made strategic bids in order to maximize the associated economic profit. Furthermore, obtaining 943 

accurate price forecasts has direct impact on the producers’ electric energy management. This is why 944 

electricity price forecasting has been a very active research field in the last 15 years. 945 

 946 

Day-Ahead Electricity Price Forecasting models have been presented in the scientific literature 947 

in recent years, mostly centered on spot (point) forecasts of hourly prices, but unfortunately they can 948 

be inadequate for trading purposes because they do not show the uncertainty associated with predicted 949 

price values, that is, spot forecasts do not provide any fundamental information for risk-based market 950 

decisions. Therefore, from this point of view, probabilistic models for price forecasting overcome the 951 

limitations of spot forecasts. The most important probabilistic approaches are focused on probability 952 

density functions (PDFs). However, there is a scarcity of probabilistic approaches based on PDFs.  953 

 954 

 This article presents original Probabilistic Price Forecasting Models (PPFM models) for the 955 

day-ahead hourly probabilistic price forecasting using probability density functions of Beta 956 

distributions. The PPFM models are based on the Nadaraya–Watson Kernel Density Estimator (NW-957 

KDE) using a suitable Gaussian KDE function for each one of its input variables, i.e., for each one of 958 

the explanatory variables of the electricity price. The new PPFM models use a very extensive set of 959 

input variables, consisting of large time series of hourly prices in previous days, regional-aggregated 960 

hourly power generations in the previous day (hydropower generation, wind power generation, solar 961 

power generation and power cogeneration, nuclear power generation, combined cycle power 962 

generation, and coal power generation), hourly power demand in the previous day, and in the previous 963 

week. Furthermore, input variables include forecasts of regional-aggregated hourly power demands, 964 

forecasts of wind power generation and weather forecasts (hourly wind speed, temperature, and 965 

irradiation) in the region for the day-ahead, as well as chronological data.  966 
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 967 

The PDF of a Beta distribution for each hour of the price variable (output variable), for each PPFM 968 

model, is directly obtained from the expected and variance values associated with the NW-KDE 969 

approach. Hence, the direct use of the historical input dataset (historical cases) without simplifications 970 

or information losses in the knowledge base (very extensive input datasets of the PPFM models) is 971 

particularly important when the purpose is to extract fundamental probabilistic information from 972 

historical similar cases. 973 

 974 

 As indicated, the uncertainty representation of the output (price variable) in each forecast hour 975 

of each PPFM model is given by a parametric Beta distribution defined by four parameters directly 976 

obtained from the NW-KDE approach. From these Beta distribution parameters we calculate, in a 977 

straightforward way, diverse types of probability values, e.g. the probabilities that electricity prices 978 

will be higher or lower than a certain threshold, prediction intervals, and any kind of quantiles. The 979 

aforementioned Beta PDF also provide powerful probabilistic information for risk-based decisions 980 

instead of point forecasts useful only for simple decisions. In electricity market business, when the 981 

market agent takes his or her decisions according to risk-based criteria, probabilistic information is 982 

essential for agent decisions involving different markets or products (e.g. daily spot, intraday spot, 983 

bilateral, or futures markets) with different levels of uncertainty. Parametric probabilistic price 984 

forecasts, efficiently used, provide a very significant advantage for market agents implicated in risky 985 

decision-making business processes, especially when high uncertainty of the prices occurs. Compared 986 

to other representations of uncertainty (e.g. quantile representations), the parametric representation 987 

approach used in the PPFM models of this article provides high adaptability to the risk-based analysis 988 

(decision processes, based on forecasts of the PPFM models, are not conditioned by the discretization 989 

of quantile representations). Furthermore, the parametric approach of Beta distributions obtained from 990 

the PPFM models surpasses the simple interval representations of the uncertainty. 991 

 992 

A new Reliability Indicator (RI) allows the uncertainty associated with price forecasts of each 993 

PPFM model to be evaluated; i.e., the RI gives a quantitative measure (from 0% to 100%) of 994 

“reliability” of the forecasts of each PPFM model. A suitable representation of a “reliability diagram” 995 

(associated with the RI) is presented in this article, designed to better evaluate the performance of any 996 

PDF of Beta distribution. Such suitable “reliability diagram” identifies “forecast cases” that fall outside 997 

the limits of the PDF. Then, the performance of a Beta distribution can be studied directly by exploring 998 

the diagram. On one hand, the RI provides performance comparisons of the PPFM models from the 999 

point of view of “reliability”. On the other hand, the RI is used in a novel procedure of bandwidths 1000 

calibration, outlined below. 1001 

 1002 

An original procedure is used to calibrate the bandwidths of the kernel Gaussian functions 1003 

involved in the NW-KDE approach. The dynamic calibration process of a bandwidth is carried out by 1004 

adjusting its value for each “forecast case” (“new case”), mainly based on the inputs and on the 1005 

similarity of historical cases in the neighborhood of this new case to be forecast. This dynamic 1006 



adjustment betters (as much as possible) the bandwidths by controlling the improvement of a reliability 1007 

measure given by the RI. 1008 

 1009 

The new PPFM models were, for the first time, successfully applied to the real-life case of the 1010 

Iberian Electricity Market (MIBEL) that covers mainland Portugal and Spain, although these PPFM 1011 

models can be applied to any other day-ahead electricity market. A systematic analysis of the MAE 1012 

errors of PPFM models corresponding to suitable combinations of their input variables was carried out 1013 

in order to determine the best PPFM model, that is, the best combination of input variables for PPFM 1014 

models that achieves the lowest MAE error value. Multiple reasonable combinations of input variables 1015 

were analyzed, from simple naïve PPFM models (only with chronological input data) to much more 1016 

complex PPFM models, with up to 17 input variables of data which include historical values of prices, 1017 

power generations, demands, and forecasted values of demands, wind speeds, temperatures and 1018 

irradiations, as well as chronological data. The best PPFM model was the model PPFM23 which 1019 

included 12 of these input variables and achieved a MAE of 5.55 €/MWh. 1020 

 1021 

The accuracy of explainable information of the forecasts of the PPFM models was evaluated 1022 

by the indicator MAE; and the uncertainty of the price forecasts obtained by PPFM models was 1023 

evaluated by the RI.  Comparisons of performances of PPFM models led to the conclusion that the 1024 

MAE error values improved and that the RI (“reliability”) values usually also improved as more types 1025 

of input variables (chronological variables, price variables, power demand variables, forecasted 1026 

weather variables, and power generation variables) were included in such PPFM models.  1027 

 1028 

The probabilistic price forecasting models of this article, their performance, mainly in terms of 1029 

MAE error and Reliability Indicator values, pragmatic calculations applied to the PDF functions 1030 

associated to day-ahead probabilistic price forecasts, and the best PPFM model, can be useful for 1031 

business players within electrical energy markets and other agents from the electric power industry. 1032 

 1033 

Possible future research works related to this article would probably be aimed to improve the 1034 

bandwidth calibration process, to use other probabilistic forecasting scores, and to analyze the 1035 

performance of the PPFM models using a non-Gaussian KDE. 1036 
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