A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2
- Valero-González, J. 7
- Leonhard-Melief, C. 3
- Lira-Navarrete, E. 7
- Jiménez-Osés, G. 247
- Hernández-Ruiz, Cristina. 7
- Pallarés, M.C. 7
- Yruela, I. 5
- Vasudevan, D. 3
- Lostao, Anabel. 67
- Corzana, F. 2
- Takeuchi, H. 13
- Haltiwanger, R.S. 13
- Hurtado-Guerrero, R. 678
-
1
University of Georgia
info
-
2
Universidad de La Rioja
info
-
3
Stony Brook University
info
-
4
University of California Los Angeles
info
-
5
Estación Experimental de Aula Dei
info
- 6 Fundación Agencia Aragonesa Para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
-
7
Universidad de Zaragoza
info
-
8
Instituto de Investigación Sanitaria Aragón
info
Instituto de Investigación Sanitaria Aragón
Zaragoza, España
ISSN: 1552-4450
Año de publicación: 2016
Volumen: 12
Número: 4
Páginas: 240-246
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Nature Chemical Biology
Proyectos relacionados
2015/00062/001
Resumen
Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions. © 2016 Nature America, Inc. All rights reserved.