Hardy spaces for Fourier-Bessel expansions

  1. Dziubański, J. 3
  2. Preisner, M. 3
  3. Roncal, L. 1
  4. Stinga, P.R. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  2. 2 Iowa State University
    info

    Iowa State University

    Ames, Estados Unidos

    GRID grid.34421.30

  3. 3 University of Wrocław
    info

    University of Wrocław

    Breslavia, Polonia

    GRID grid.8505.8

Journal:
Journal d'Analyse Mathematique

ISSN: 0021-7670

Year of publication: 2016

Volume: 128

Issue: 1

Pages: 261-287

Type: Article

Export: RIS
DOI: 10.1007/s11854-016-0009-9 SCOPUS: 2-s2.0-84962376973 WoS: 000373403500009 GOOGLE SCHOLAR

Metrics

Cited by

  • Scopus Cited by: 3 (12-06-2021)

Journal Citation Reports

  • Year 2016
  • Journal Impact Factor: 1.071
  • Best Quartile: Q1
  • Area: MATHEMATICS Quartile: Q1 Rank in area: 52/311 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2016
  • SJR Journal Impact: 2.427
  • Best Quartile: Q1
  • Area: Analysis Quartile: Q1 Rank in area: 11/138
  • Area: Mathematics (miscellaneous) Quartile: Q1 Rank in area: 19/427

CiteScore

  • Year 2016
  • CiteScore of the Journal : 2.1
  • Area: Mathematics (all) Percentile: 83
  • Area: Analysis Percentile: 74

Abstract

We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on (Formula presented.) and ((0, 1), dx). We define Hardy spaces H1 as the sets of L1-functions whose maximal functions for the corresponding Poisson semigroups belong to L1. Atomic characterizations are obtained. © 2016, Hebrew University Magnes Press.