Effects of Kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and Its Compatibility With the Natural Enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae)

  1. Pease, C.E. 2
  2. López-Olguín, J.F. 1
  3. Pérez-Moreno, I. 2
  4. Marco-Mancebón, V. 2
  1. 1 Benemérita Universidad Autónoma de Puebla
    info

    Benemérita Universidad Autónoma de Puebla

    Heróica Puebla de Zaragoza, México

    ROR https://ror.org/03p2z7827

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Journal of Economic Entomology

ISSN: 0022-0493

Año de publicación: 2016

Volumen: 109

Número: 2

Páginas: 740-745

Tipo: Artículo

DOI: 10.1093/JEE/TOV400 SCOPUS: 2-s2.0-84964334107 WoS: WOS:000374497000032 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Economic Entomology

Repositorio institucional: lock_openAcceso abierto Postprint lockAcceso abierto Editor

Resumen

Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae) is an important grapevine pest in Europe recently encountered in America. Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae) is amongst the most effective parasitoids for Lepidopteran species. Studies to evaluate the effect of kaolin, an inert, nontoxic mineral, on oviposition, egg hatch, and neonate mortality of these species were carried out. Efficacy on L. botrana neonate larvae, oviposition, and egg hatch was evaluated. Effects of kaolin on parasitism and emergence of T. cacoeciae from L. botrana and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs were also evaluated. Lobesia botrana egg hatch and oviposition rates were reduced, and neonate larvae mortality was significantly greater in kaolin-treated arenas and when included in synthetic neonate larvae diet. Kaolin had no effect on T. cacoeciae parasitism in both hosts. There was only a slight but statistically insignificant effect on T. cacoeciae progeny emergence from L. botrana eggs and no effect from E. kuehniella. The results involving reductions in L. botrana oviposition and egg hatch and increase in larval mortality with kaolin suggest this compound may contribute to reduction in population densities and can be considered in rational integrated pest management strategies for L. botrana. Due to the laboratory results presented on parasitoid emergence, even though field bioassays would give a more exhaustive evaluation, it appears kaolin can be compatible with T. cacoeciae in L. botrana management.