Response surface optimization for determination of pesticides residues in grapes using MSPD and GC/MS: assessment of global uncentainty.
-
1
Universidad de La Rioja
info
ISSN: 1618-2642
Ano de publicación: 2010
Volume: 398
Número: 3
Páxinas: 1509-1523
Tipo: Artigo
beta Ver similares en nube de resultadosOutras publicacións en: Analytical and Bioanalytical Chemistry
Proxectos relacionados
Resumo
In this work, a simple and low-cost method based on matrix solid-phase dispersion (MSPD) and gas chromatography to determine eight multi-class pesticides such as vinclozolin, dichlofluanid, penconazol, captan, quinoxyfen, fluquinconazol, boscalid, and pyraclostrobin in grapes is described. Fungicide residues were identified and quantified using gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS, SIM). The experimental variables that affect the MSPD method, such as the amount of solid phase, solvent nature and elution volume were optimized using an experimental design. The best results were obtained using 0.5 g of grapes, 1.0 g of silica as clean-up sorbent, 1.50 g of C18 as bonded phase and 10 mL of dichloromethane/ethyl acetate (1:1, v/v) as eluting solvent. Significant matrix effects observed for most of the pesticides tested were eliminated using matrix-matched standards. The pesticide recoveries in grapes samples were better than 80% except for captan. Intra-laboratory precision in terms of Horwitz ratio of the pesticides evaluated was below 0.5, suggesting ruggedness of the method. The quantification limits of the pesticides were in the range of 3.4-8.7 μg kg-1, which were lower than the maximum residue limits (MRLs) of the pesticides in grapes samples established by the European legislation. Decision limits (CCα) and detection capability (CCβ) have been calculated. The expanded uncertainties at two levels of concentration were <20% for all analytes. © 2010 Springer-Verlag.