Bilinear biorthogonal expansions and the Dunkl kernel on the real line

  1. Abreu, L.D. 2
  2. Ciaurri, T. 1
  3. Varona, J.L. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidade de Coimbra
    info

    Universidade de Coimbra

    Coímbra, Portugal

    ROR https://ror.org/04z8k9a98

Revista:
Expositiones Mathematicae

ISSN: 0723-0869

Año de publicación: 2012

Volumen: 30

Número: 1

Páginas: 32-48

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.EXMATH.2011.08.001 SCOPUS: 2-s2.0-84857441837 WoS: WOS:000302894300003 arXiv: 0909.0067 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Expositiones Mathematicae

Repositorio institucional: lock_openAcceso abierto Postprint lockAcceso abierto Editor

Resumen

We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases, and it also provides a bilinear expansion for the Dunkl kernel (in the rank 1 case) which is a Dunkl analogue of Gegenbauer's expansion of the plane wave and the corresponding sampling expansions. In fact, we show how to derive sampling and Fourier-Neumann type expansions from the results related to the bilinear expansion for the Dunkl kernel. © 2011 Elsevier Ltd. All rights reserved.