Bilinear biorthogonal expansions and the Dunkl kernel on the real line
- Abreu, L.D. 2
- Ciaurri, T. 1
- Varona, J.L. 1
-
1
Universidad de La Rioja
info
-
2
Universidade de Coimbra
info
ISSN: 0723-0869
Argitalpen urtea: 2012
Alea: 30
Zenbakia: 1
Orrialdeak: 32-48
Mota: Artikulua
beta Ver similares en nube de resultadosBeste argitalpen batzuk: Expositiones Mathematicae
Lotura duten proiektuak
Laburpena
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases, and it also provides a bilinear expansion for the Dunkl kernel (in the rank 1 case) which is a Dunkl analogue of Gegenbauer's expansion of the plane wave and the corresponding sampling expansions. In fact, we show how to derive sampling and Fourier-Neumann type expansions from the results related to the bilinear expansion for the Dunkl kernel. © 2011 Elsevier Ltd. All rights reserved.