Rearrangement estimates for fourier transforms in Lp and Hp in terms of moduli of continuity

  1. García-Cuerva, J. 2
  2. Kolyada, V.I. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

Aldizkaria:
Mathematische Nachrichten

ISSN: 0025-584X

Argitalpen urtea: 2001

Alea: 228

Orrialdeak: 123-144

Mota: Artikulua

beta Ver similares en nube de resultados
DOI: 10.1002/1522-2616(200108)228:1<123::AID-MANA123>3.0.CO;2-A SCOPUS: 2-s2.0-18344410920 WoS: WOS:000170870600005 GOOGLE SCHOLAR

Beste argitalpen batzuk: Mathematische Nachrichten

Gordailu instituzionala: lock_openSarbide irekia Editor

Laburpena

One of the main purposes of this paper is to obtain estimates for Fourier transforms of functions in Lp(ℝn) (1 ≤ p ≤ 2) in terms of their moduli of continuity. More precisely, we study the following problem: find sharp conditions on the modulus of continuity of a function f ∈ Lp(ℝn), under which the non-increasing rearragement of f̂, the Fourier transform of f, is integrable against a given non-negative weight function ρ. We shall also study similar problems for the Fourier transforms of functions or distributions in the Hardy spaces Hp(ℝn) (0 &lt; p ≤ 1, n ∈ ℕ).