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Rearrangement Estimates for Fourier Transforms in LP and
H? in Terms of Moduli of Continuity
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Abstract. One of the main purposes of this paper is to obtain estimates for Fourier transforms
of functions in LP(R"™) (1 < p < 2) in terms of their moduli of continuity. More precisely, we study
the following problem: find sharp conditions on the modulus of continuity of a function f € LP(R"™),
under which the non-increasing rearragement of f, the Fourier transform of f, is integrable against a
given non-negative weight function p. We shall also study similar problems for the Fourier transforms
of functions or distributions in the Hardy spaces HP(R™) (0 < p <1, n € IN).

1. Introduction

One of the important questions in the theory of Fourier series is the following: How
are the smoothness properties of a function reflected on the behaviour of its Fourier co-
efficients ? In 1914 S. N. BERNSTEIN proved that for each function f € Lipa (o > 1/2),
the sequence of its Fourier coefficients belongs to ¢!, and this property fails for « = 1/2.
Later on, more general estimates of Fourier coefficients were obtained by S. N. BERN-
STEIN, H. WEYL, O. SzAsz, G. G. LORENTZ, S. B. STECHKIN, A. A. KONJUSHKOV,
A. PIETSCH and other authors (see [B], [Z] and [Pi]). We note that in the process
to obtain those estimates, the crucial role was played by the Hausdorff-Young and
Hardy-Littlewood inequalities.

Our goal is to obtain estimates for the rearrangements of Fourier transforms. We
start by recalling some definitions and known results.

We shall denote by Sp(IR™) the class of all measurable functions f on R", which are
finite almost everywhere and satisfy the condition

(1.1) Ar(y) = Hz e R™ : |f(z)| >y} < oo for all y > 0.

If a function f belongs to So(R"), then its non—increasing rearrangement is defined to
be the function f* which is non-increasing on 0, oo[ and is also equimeasurable with
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|f(z)|. Sometimes the functions in Sp(R™) are called rearrangeable. Set
() / f(u t > 0.
For every t > 0 we have (see [B-S, p. 53])

(1.2) 10 = sw 1 [ 7@ d.

|Bl=t T

Besides, by the Hardy—Littlewood theorem (see [B-S, p. 44]), for every f,g € So(R"),

(13) | we@la < [T oo

Let 0 < p,r < 00. A function f € Sp(R™) belongs to the Lorentz space LP"(R™) if

i, = ([ (o) 9 <

The Fourier transform f of a function f € L' (R™) is defined by
f© = | f@em e do.

If feLP(R"™) (1 < p < 2), then its Fourier transform satisfies the Hardy-Littlewood
inequality, namely (see [B-L] and [Z])

(14) (f e

A stronger inequality is given by the Hardy-Littlewood—Paley theorem, which says
that for each f € LP(R") (1 <p < 2)

p 1/p
©| ds) < ol

oo R 1/p
(15) ([Tezrara) < e,
0
Furthermore, if f € LP"(R") (1 < p <2, r > 0), then

o < CUL

(see [H], [J-S 1] and [St]), where, as usual, p' denotes the exponent conjugate to p,
given by 1/p +1/p' = 1. Inequality (1.5) is a particular case of (1.6) for r = p.

If we apply these inequalities to the finite differences or to the derivatives of a given
function, we can get estimates for the Fourier transform of the function in terms of the
LP—norm (1 < p < 2) of the corresponding differential characteristic. In particular,
taking into account that

(1.6)

(1.7) F©)] < 1Y |Dif©)] (rem),
k=1
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we immediately obtain from (1.5) that for each function f € W;(R"), (n,r € N,
1<p<2)

oo 1/p n
(1.8) ( [y dt) < oS I,
0 k=1

The notation W (R") (1 < p < oo, r € IN) stands for the Sobolev space of all
functions f € LP(R") for which every weak derivative D*f, s = (s1,..., 8,), of order
|s| = s1 4+ -+ + s, < r exists and belongs to LP(R™). The right-hand side of (1.8)
contains only the norms of non—mixed derivatives. But it is well-known that, for
1<p<x

n

(1.9) Yo IDsl, < €Y IDifll, -
|s|=r k=1

However (1.9) fails for p =1 (see [B-I-N]).

For p = 1 the inequality (1.4) does not hold and it is impossible to use the method
described above. In fact, for the Fourier transforms of functions in L!(R), the only
available estimates are those based upon the obvious inequality || f ||00 < |Ifl1-

Nevertheless, the situation is quite different in the multi—-dimensional case. Namely,
the following theorem was proved in [Bol] and [P-W]. See also [Bo2].

Theorem 1.1. If f e W] (R") (n > 2, r € IN), then

(1.10) G N L

|s|=r

Contrary to what happened in (1.8), the right-hand side of (1.10) contains all the
derivatives of order r. It was proved in [Ko2] that the norms of the mixed derivatives
can be omitted.

Denote by W, (R") (1 < p < oo, r € IN) the space of all functions f € LP(R"), for
which every weak derivative D}, f = 0" f/0x], exists and belongs to LP(R"). By (1.9)
we have W;(]R”) = W) (R") for 1 < p < oo, but this is not true for p = 1.

The following result was obtained in [Ko2].

Theorem 1.2. Let f € W{(]R") (n>2, r € IN). Then

(1.11) FOler T de < ¢S DL
|l > 193
and
(1.12) / Formtae < oS IDl,
0 k=1

It follows from (1.3) that, for r < n, the inequality (1.12) is stronger than (1.11).
On the contrary, for r > n, (1.11) implies (1.12).
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Of course, (1.11) and (1.12) fail to hold for n = 1. In particular, it is well-known
that there exists f € W (R), such that f ¢ L'(R).

One of the main purposes of this paper is to obtain estimates for Fourier transforms
of functions in LP(R™) (1 < p < 2) in terms of their moduli of continuity. More
precisely, we study the following problem: find sharp conditions on the modulus of
continuity of a function f € LP(R"), under which

(1.13) /Ooo Fr@®)Pp(t)dt < oo,

where p is a non—negative weight function. In other words, we ask how the inequality
(1.5) improves if we put some additional conditions on the smoothness of f. As was
mentioned above, for 1 < p < 2, we will use the inequality (1.5). For p=1and n > 2,
the crucial role will be played by the inequality (1.12). We must point out that the
results obtained do not extend to the case n = p = 1.

We shall also study similar problems for the Fourier transforms of functions or
distributions in the Hardy spaces H?(R") (0 <p<1,n € IN).

It is well-known that for every f € HP(R"™) (0 < p < 1), its Fourier transform f is
a continuous function on R™ satisfying the inequalities

(1.14) 1F@] < el

N 1/p
(1.15) ([ =70l ae) "~ < il

(see [F-S], [G-R] and [T-W]). Of course, the inequality (1.15) cannot have a “rear-
rangement” counterpart of the form (1.5), since f need not belong to So(R™). Thus,
our starting point will be other type of rearrangement inequality, which can be in-
terpreted in terms of the Riesz potentials. It follows easily from (1.14) that for each
f € HP(R™) (0 < p < 1), the function

F(¢) = [¢m0=1P|f(9)|

belongs to the class So(R") (see the definition in (1.1)). Thus, instead of (1.13), we
study the convergence of the integral

(1.16) /0 Y PP p(t) dt

The main results of this paper are Theorems 2.5, 2.7 and 3.6. These theorems give
necessary and sufficient conditions for the convergence of the integral in (1.13) or,
respectively (1.16), for each f belonging to a class of functions having a given majorant
for their LP— (or, respectively HP—) moduli of continuity.

In view of (1.3), the most interesting case is when the weight function p is decreasing.

We should mention the paper [J-S 2], in which some weighted rearrangement in-
equalities for the Fourier transform were studied.
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2. Fourier transforms of functions in LP(R")
Let f be a function defined on R™. If r € N and 1 < j < n, we set
r
r

1) 8505 = S0 (] ) o+ e,

k=0

where 2 € R™, h € R, and e; is the j—th unit vector from the canonical basis of R".
If the function f € LP(R") (1 < p < 00), then its LP-modulus of continuity of order
r with respect to the j—th variable is defined by

wi(fi0), = sup [AT(R)F| (0<d<00).
0<h<§
We also set

w"(f;6)p = ng(fa S)p -
j=1

It is easy to see [N, p. 147], that for every v € IN,

(2.2) wi(f;v)y < v'wi(f;0), (1<j<n).

If there exists a weak derivative D} f € LP(R"), then

(2.3) wi(f;0), < &"|Djfl|l, G =1,...,n).
Furthermore, for f € LP(R"), r e N, h > 0and 1 < j < n, we set

r
r

Siaf@) = 1 [ S () sk b+ ue) du
[0.h]" =1

(see [B-S, p. 340]). It is easy to see that
(2.4 155571 < 27 0flls (17 =Sifll, < wi(fsrh),.

Besides, there exists a weak derivative D7 (Sﬁ7jf) and

(25) 1D (Sh;£)l, < Ch™"wi(£;h)p-
Now, if we set

(2.6) fu(z) = Shy-..Spaf(z),

then it follows from (2.4) and (2.5) that

(2.7) 1f = Full, < Cw"(f5h)p

and

(2.8) IDjfall, < Chref(Fih)y (G=1....m).

In this section we shall search for estimates of rearrangements of Fourier transforms
of functions in LP(R") (1 < p < 2), in terms of their moduli of continuity. We begin
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with the case 1 < p < 2, which is simpler and can be analyzed completely by means
of the inequality (1.5).

Proposition 2.1. Let f € LP(R™) (1< p <2, n € N) and r € N. Then, for every
T>0

0o 1/p
(2.9) < / t”f*(t)pdt> < O (FT7YM),
T
and
T 1/p
(2.10) ( / t’”/"+”‘2f*(t)”dt> < oTrur (f;TT)
0

with a constant C' depending only on p, n and .

Proof.For7>0and j=1,...,n set

erj(@) = Aj(1)f(2).
Then

(2.11) Gri(€) = (7779 —1)" f(9).
For T <t < oo denote

B = {¢eR" ¢ [f©)>F 0}
Then |E;| > t. There exists j = j(t) such that the set

E! {g € B |4 le/"/2}

has measure |E}| > |E|/(2n).
Let h = T~'/". For every ¢ € E! we have

rh ” rh
/ 26 — 1] dr > / (1 —cos2mg&;T)" dr
0 0

v

rh
/0 (1 —rcos2mé;T) dr

> 1o —1
( 27Th|£]|>

rh
> —.
- 2
Thus, for every & € E} (see (2.11))
. . 2 rh
7@ < f©] < = | leni©] dr,
rh Jo

and we have

2 4n rh dn [Th
() < ——— d 5. (6)] de < = 5. () d i = j(t).
o< g v [ Eene < [T etae 5= o)
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By applying (1.5) and Hardy’s inequality ([B-S, p. 124]), we obtain

00 . 1/p n 1 rh 00 1/p
(/ P2 ()P dt> <Ccy (E/ dr [ @ " (t)Ptr—2 dt)
0 0
1
h

T j=1

n rh 1/p
cy ( | et dr>

j=1

IN

IN

Cw"(fh), .

Thus, we have proved (2.9).
Now, let fp (h = Tfl/”) be the function defined by (2.6). Then, by applying
inequalities (1.5) and (1.8) to f — f;, and f} respectively and using (2.7) and (2.8), we

obtain (with a = r/n + 1/p')
T ) 1/p 0o W /H\? 1/p
/ S ML Tr/n (/ =2 f = fu (—) dt)
0 0 2
o0 cx (N N7
(e (3) )
0 2

c (w 1F = full, + > ||D§fh||p>
j=1

< Ch W (fih),

IN

IN

Now the proof is complete. |

Corollary 2.2. If f e LP(R") (1 <p <2, n € N) and r € N, then
(2.12) frt) < ot rTtn (i,

Now, let us consider the case p = 1. We first observe that the inequality (2.12) holds
in this case too. Indeed, let f € L'(R"™). For each £ € R", there exists j such that
|fj| > [€|/n. If we use (2.11) with 7 =1/(2 |§j|), we get

|f(f)| _ 2—r|@(€)| < 277‘/]}1" lor,j(z)] de < 27“0‘;7‘(]05%)1.

From here it immediately follows that
(2.13) F) < Gy (f36717),

Let 1 <p,fl < oo, a >0and r > a (r € N). The Besov space By ,(R") consists of
all those functions f € LP(R™) for which

) d 1/6
I, = ([ o)’ $) < .

If we choose different integers r > «, we obtain equivalent seminorms (see [B-I-N]).
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From the inequalities (2.12) and (2.13), we immediately get

Corollary 2.3. Let 1 < p<2,1<60< o0, a>0andq= (a/n+1/p) L If
f € By y(R"), then

1£ll e < S los -

This result was obtained by other methods by A. PIETSCH (see [Pi, p. 270]). Setting
6 =1 and a = n/p, we obtain the Bernstein—Szasz theorem: if f € BZ/lp(IR”) (1<
p <2), then f € L'(R") (see [Sz] and [Z]).

Note that the estimate (2.13) is sharp in the case n = 1 (see Proposition 2.8 below).
But for n > 2 it can be strengthened.

Proposition 2.4. Let f € L*(R"™) (n > 2) and r € N. Then, for each T > 0
T
(2.14) /0 /TR At < C TG (T

Proof. Let h = T~/ For every t > 0, we have

0 < f O+ 1F =5l
(where f3, is defined by (2.6)). Furthermore by (2.7)

IF=Full < I = fally < Cw"(f5h)s
On the other hand, it follows from (1.12) and (2.8) that

T . -
/ T () dt < O [Dj(fll, < CRTWT(fih)n

0 =

This completes the proof. O

Inequality (2.14) is an exact counterpart of (2.10), but it arises from a completely
different reasoning. We remark once more that (2.14) does not hold for n = 1.
If

(2.15) w"(f;0)1 = 0(0"),

then it follows from (2.14) that

/ /LR At < osupd W' (f50); -

0 0>0

Note that if f € W{(R”), then (2.15) holds (see (2.3)), but the converse is not true.
By using Propositions 2.1 and 2.4, we obtain a weighted rearrangement inequality
for the Fourier transform.

Theorem 2.5. Letr € Nand 1 <p <2, ne€ N orp=1, n> 2. Also, let p be a
non—negative locally integrable function on [0, +oo[ and set A(t) = fot p(u) du. Suppose
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that \(t)t'P increases and A(t)t~ P decreases on ]0,+oo[, with a = r/n + 1/p'.})
Then, for each function f € LP(R"™)

@1 [P < 03 AL (fi2
0 veZ

where 2)

(2.17) Y, = o min (w,, — Wya1, Wy — 2*'@,,,1) ,

with

w, = w’"(f;2*”)p (veiz).
Proof. We follow the same scheme used in [Kol]. We have

/0 T e < 3 FETPAERIE) - a@™))

veZ,

_ Z )\(Qnu)(f*@n(uﬂ))p _ f-*(QnV)p)

veZ,

Z dyey,

veZ,

where we have denoted d, = \(2"*)2"*(1=P) and

g, = 2nu(p—1) (f*(Qn(u—l))P _ f-*(Qnu)p) )

Recall that, by our assumption, the sequence {d, }, 7 is increasing. Also, by Propo-
sitions 2.1 and 2.4, we have

oo v

(2.18) doep < Cuwb, > 2P < 027,
s p—
Let
o = {k:wpp1 > 2w}, o = {kwepr <27Twe—1 ).

Since the sequence {wy }rez is bounded, it is clear that there exists some kg € Z such
that k € o' for all k < kg.
If u€o' but p+1€a”, then

Yo = (W —wur1)/wus Vg1 = (Wupr — 27 wp) fwpga -
Thus,
(2.19) Yo+ Yup1 > 1=27" (peo, p+1€0”).

Let v and p be integers such that v < p and [v, u] N ¢” = (). We estimate the sum

7

'

SV,” = dee’:‘k.
k=v

1) Note that in view of the inequalities (1.5), (1.8) and (1.12), these conditions are quite natural.
2) In view of (2.2) we have 75, > 0. Of course, we assume that f is not equivalent to 0.
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Let ap = d, —dg—1 for v+ 1< k < pand a, =d,. By (2.18)
w
TPV VIS ) SR ol
k=v j=v j=v j=v
w
(S n St -t +dh )

I
< CP(Z dpwhve + duwﬁ+1> .
k=v
If £+ 1 € 0", then by (2.19) we obtain
pt1
SLu < O dpwhy.
k=v

If all the integers k > v belong to o', then the convergence of the series in the right—
hand side of (2.16) will imply that whd, — 0 as u — oo. Thus we get that

Z drer < C Z dkwﬁvk .
keo’ keZ

Now suppose that u and v are integers such that u+1 <v, [p+ 1,v]No’ = and
u € o'. Consider the sum

v
"
SH,V = Z dke’:‘k.
k=p+1

Denote ny, = 25" wy. Also, let by = 27FPd, — 2= *+Urpq ) for p+1 < k < v and
b, = 27""d, (recall that 27*"7d,, is decreasing). Then by (2.18) and (2.19)

v J
Sy, Z 2’“’"P5k2b = > b > 2trg

k=p+1 j=p+1l  k=p+1

C > bt

J=p+1

v J
=C Z bj Z (772)_772)4)+27(u+1)rpdu+1775

j=p+1l  k=p+1

C Y dywhy .

k=p

IN

IN

Thus we get

Y dier < CD diwhn

keo keZ
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and the proof is complete. O

Remark 2.6. From the estimates (2.12) and (2.13) it follows at once that

(2.20) / FrPpt)dt < c/ ()" P (fre )0 de

The integral in the right—hand side of (2.20) is equivalent to the sum
ST (Wh —wh ), we = W (27,
veZ,

The estimate (2.20) is not sharp if w”(f;d), decreases very rapidly as § — 0 (so that
its order is close to the best possible O(6")). For example, if for some 8 > 0

W'(f;8), = O(6"1log"(1/8)), & — 0,

using (2.20) we must require that

/ p(t)t~*P(log t)ﬁp dt < <a _r + l)
2

to make sure that the integral

(2.21) /OOO FX(t)p(t) dt

is convergent. But if we use (2.16), we easily see that the weaker condition

/ p(H)t=P(logt)?P~1dt < oo
2
already implies the convergence of (2.21)

Now we are going to prove that Theorem 2.5 is sharp.

Let r € IN. We shall say that a function w(d) defined on [0, +00[ belongs to the class
Q, if it satisfies the following three conditions:

1. w(d) > 0 for all § and w(0) = 0;

2. w(9) is increasing, continuous and bounded on [0, 4+o00[;

3. w(20) <2"w(d), 0 < 4§ < oc.

Note that for each function f € LP(R") (1 < p < o0) its modulus of continuity
w"(f; ), belongs to O, (see (2.2)).

Ifw € Q, and 1 < p < oo, then we shall denote by Ly>"(R") the class of all functions
f € LP(R™) such that

w'(f;0)p = Ow(9))-

Theorem 2.7. Letn,r € N, w € Q. and 1 < p < 2. Also, let p(t) be a non—negative
locally integrable function on [0,00[ and set A(t fo u) du. Suppose that \(t)t' P
increases and \(t)t~*P decreases (a =r/n + l/p) Let w,, = w(27Y),

1
(2.22) Yy, = — min (wl, — Wyt1, Wy — 27"w,,_1) .
Wy

If the series
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(2.23) ZA 22 (1=p) by
diverges, then there exists a function f € Ly'"(R™) such that

(2.24) /1 T i wPptdt = oo,

Proof. Set 1, = 2""w,. The sequence {7, } is increasing. It follows from the diver-
gence of the series (2.23) that 1, — oo as v — c0. Set v, = 0 and )

1
(2.25) Vg+1 = min {I/ fwy, < iwyk and 7, > 27"77,,,“} .
For each k € IN at least one of the two following inequalities holds
1
(226) wuk+1 Z Z Wy,
or
(2.27) Npr < 4"y, -

Furthermore, let

n

1 2N gin 27\
Vi(w) = _H/ L -dX
=1/N J

be the De la Vallée—Poussin kernel. Then ( see [N])

(2.28) IVall, < CN'7VP,
Denote U (z) = Vavi (x) and consider the function
o0
(2.29) fl@) = w, 2Dy (z)
k=0

It follows from (2.28) that the series in (2.29) converges in LP(R™). Let us estimate
the LP~modulus of continuity of f. Let 2751 < h < 27° (s € IN). Using (2.3), (2.28)
and the properties of the kernel V;, (see [N]), we have (1 <j < n)

||A;(h)f||p < Z wkanuk(l/P—l)||A§(h)Uk||p+2r Z kaQnd(l/p_l)HUk”p
k=0 k=s+1
< c<h"2nuk+ > wuk>
k=0 k=s+1
< C(hmw, +wi,yy) -

Since the function 0~ "w(d) is almost decreasing, we get

|AwF], < Cwlh), 5= 1,....n.

3) Such sequences were used before by K. I. Oskorkov [O].
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Thus, f € Ly "(R").
Furthermore, for every N € IN, we have (see [N, p. 305]) ‘7}\\;(5) >0 (¢ € R") and
VN(§) =1if || <N, (j =1,...,n). It follows that

(2.30) f'*(Qn(VlnLl)) > wyk2nuk(1/l771)‘

Using this estimate and denoting A, = A(2"™"), we obtain

/1OO f*(t)pp(t) dt > Z f*(QnVHl)p(/\VkH - /\Vk)

k=0

> nganuk(l—p) ()\Vk — )\Ukil)
k=1

(1=277) > wh 2me(mP) ), — P (1)A(1).

>
k=1
It remains to prove that
o0
(2.31) > wp 2T, = oo,
k=1

Denote d, = 2"(1=P) \,,. By our assumption, the sequence {d,} is increasing. Let

l/k+171

S = Z dy,whby, .

V=V}
Suppose that for some k € IN, (2.26) holds. Then we have, using also (2.25)

l/k+171
§ : p—1 D P P
Sk S dl’k+1 Wy (wl/ - wV-H) S dl’k+1(")u1c S 4 dl’k+1wuk+1 .

V=V}

Now suppose that (2.27) holds. Recall that the sequence {27"?d,} is decreasing.
Thus we get

l/k,+1—1
Se <3 2P (= nur) < 27 Pdy < AP,

V=Vp

From these estimates and the divergence of the series (2.23), we get (2.31). The proof
is now complete. O

Inequality (2.30) shows that for every p, such that 1 < p < 2, every n € IN and every
order for the modulus of continuity, the estimate (2.12) is sharp for the values t = 2"k
where {v} is the sequence defined by (2.25). At the same time, for 1 <p <2, n>1
or p =1, n > 2, this estimate can be strengthened in a certain “integral” sense (see
(2.9), (2.10) and (2.14)). Now we shall show that for p = n = 1, the situation is quite
different. In this case the estimate (2.13) is sharp for all values ¢ > 0 simultaneously.
For simplicity we shall consider the case r = 1.
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Proposition 2.8. For each w € Qy, there exists a function f € L‘f’l(IR), such that,
for every t >0

(2.32) ) > Cw<1> :

t

where C is a positive constant.

Proof. Denote w, = w(27"), n, = 2”w,. Let {v} } be the sequence defined by (2.25).
Furthermore, let Ay, = [0,27%*] and fi(z) = 2" w,, xa, (x). Let

f@) = 3 ful),
k=0

where the series converges in L'(R).
Suppose 277+ < h < 27+, Then (see (2.25))

AR fly

IN

STNAMfelly +2 > Nfelly
k=0

k=s+1

2 (hzs:gwwyk + i w,,k>
k=0

k=s+1

IN

IN

8w(h) .

Thus f € LY (R).
Next we have
_ ,—2mi27 VR

R ad 1—e¢
_ Vi
k=0
Thus

; 1 = o
f(f)‘ Z me:OQ Wy, Sln2(7'r£2 )

Let 2% <t < 2¥s+!. For each k = 0,1,..., there holds at least one of the inequalities
(2.33) (a) 4ka+1 > Wy, or (b) Moy < 4n,, .

Suppose that, for k = s, we have (a). Then, for any £ € [2¥s+172 2Vs+171]

2 1 1 1
FO > o > g-o(3).

[t 1 /1
J (1> 2 s—w“(z)

Now suppose that, for k = s, there holds the inequality (b) in (2.33). Let

b

Thus

E, = {ge [t,41] : |sin (w€27"7)| >

s
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It is easy to see that |E;| > t/4. For each £ € E}

N 1 1 1
> 2w, > 2V, > Cw| -
f(€)| = W\/if s = ].671'\/515 s+1 (t)
(C > 0). Thus we get f*(%) > Cw(1) . And the proof is finished. O

3. Fourier transforms of functions or distributions in the Hardy
spaces HP(R"™)

The notation HP(R™) will have for us the same meaning as in Chapter III, Section 4
of [G-R]. That is, H?(R") will be a space of real-valued tempered distributions f(z)
in R"™, which are the boundary values of harmonic functions w(z,t) in the upper
half space ]R:ﬁ+1 = R"x]0,00[, having a non—tangential maximal function m,(z) =
SUp|y <t u(y, )] in LP(RP).

We shall use two other ways to look at H?. First of all, in the one—dimensional case,
each f € HP(R) corresponds to a holomorphic function in R}, F = u + w having

sup;so (fg 1F (2 +2t)|P da?)l/p < oo. This supremum is equivalent to ||m.||,, which
is, by definition, ||f||z, . Still in the one-dimensional case, there is another quantity

equivalent to || ||, , which we shall find useful; namely (fg |F(z)|? da:)l/p, where
F(z) = limy_,0 F(z +4t), a limit that is shown to exist for a.e. z € R. For this view
of H? see Chapter 1 of [G-R].

Finally, the other convenient way to look at H? will be the atomic decomposition,
that we shall need below. For this and additional information on Hardy spaces, we
refer the reader to [G-R].

Let f € HP(R"), 0 < p < 0o. For r € N and 1 < j < n, we denote (see (2.1)) for
0<§ < oo,

wi(f;0)mr = sup ATV f|| s @™ (f30)me = ;w}"(fﬁ)m-

0

If f € HP(R"™), 0 < p < oo, and there exists a derivative D} f € H?(R") (in the sense
of distributions), then

(3.1) Wi(f;0)ur < CO||D} S|, -

This inequality was obtained in [Os] by using atomic decompositions.
We shall use the following refinement of the inequality (1.15).

Lemma 3.1. Letn € N, 0 < p< 1 and e > 0. Then there exists a constant C' such
that for every f € HP(R")

00 1/p
(3.2) (/ tfplF:a)pdt) < Clifllan,

where F.(&) = |¢|n0—1/p=2) |f(€)|
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Proof.Set A=n(e+1/p—1), N = [n(1/p—1)]. It is sufficient to prove (3.2) for
small €, so we may assume that N +1— X > 0.

First we consider the case when f is a unit p-atom (see [G-R]). In this case, it
follows from (1.14) and the inequality |f(f)| < CEINFL (see [T-W]), that

(3-3) 1Fll < C.

Furthermore, denote E;={¢ € R" : F.(§) > FX(t)}; then |E;|>t. Let S; be the com-
plement of the ball in R™ of measure t/2 and centered at the origin. Then |E:NS| > t/2
and we have

2

ey < G [ R

2 1-p/2 R p/2
< F([Lermenac) ([ irora)

< Ctp(1/275)71 )

Using this estimate and (3.3), we get

[e%S] t 1/p
(3.4) </ P2 dt/ FX(u)? du) < C.
0 0

After re—scaling, it follows that (3.4) holds with the same constant for any p—atom f.
In the general case, we shall use the atomic decomposition f =}, A;a; (see [G-R]).

We have f = Y, A\;a; and F.(€) < Y2, [\;[4;(€), where A;(€) = [¢]7*]a;(€)| . More-
over

t t
/ Frw)? du < ZWV’/ A3(w)? du.
0 j 0

Thus the validity of (3.4) for p-atoms implies (3.2) for each f € HP. The lemma is
proved. O

Remark 3.2. For the function oo(&) = 1/|¢] (€ € R™) we have @§(t) = (v, /t)*/™,
where vy, is the measure of the n—dimensional unit ball. Thus it follows from (1.3)
that (3.2) gives a strengthening of Hardy’s inequality (1.15).

Remark 3.3. Note that F.(§) = |f>\7(§) , where I f is a Riesz potential of f. Thus,
the inequality (3.2) can also be derived from the embedding theorems (see [T-W] and
[F-R-S]) and the inequality (1.6). However, we chose to give a more direct proof.

Next we obtain

Corollary 3.4. Let f € HP(R") (0 <p <1, n € N) and r € IN. Suppose that there
exist partial derivatives D} f € HP(R") (j = 1,...,n). Then

o) 1/p n
39 ([ ermimarar) < 030Dl
0 j=1



Garcia—Cuerva and Kolyada, Rearrangement Estimates for Fourier Transforms 139

where F(&) = |&[»(1-1/P) |f(f)|

Proof. Indeed, it is sufficient to apply Lemma 3.1 with e = r/n to each of the
derivatives Dj f and take into account (1.7). i

Inequality (3.5) is a particular case of the following theorem.

Theorem 3.5. Let 0 < p <1 and n,r € IN. There exists a constant C' such that for
every f € HP(R"™) and every T > 0

1/p

T
(3.6) (/0 trp/nle*(t)p dt) < CT"™/ ™" (f, Tfl/n)Hp,

where F(&) = ¢]"" /7 f(©)].
Proof. Set ¢, j(z) = Al(r)f(z) (r >0, j=1,...,n). Then

(3.7) Brj(&) = (™5 —1)" f().

Also, let t €]0,T] and E; = {£ € R": F(§) > F*(t)}. Then |E;| > t. There exists
j = j(t), such that the set E] = {{ € E; : |&;| > |€]/n} has, at least, measure t/n.
Denote h = T~ /™. Suppose, first, that E, C U, where U is the ball of radius T/™ /2
centered at the origin. Then, for every ¢ € E}, we have

le*™&ih — 1| > |sin (7&h)| > 2[&|h > |l h/n.
Denoting ®.;(€) = [¢]"~1/P="/M"Gr 5 (€)], we get
F(&) < (n/h)"®h;(8), €€ E;.
Since F(&) > F*(t) for every ¢ € Ef and |E{| > t/n, it follows that
(3.8) FX(t) < (n/h)"®} ;(t/n).

Now suppose that E;' = E; \ U # 0. Since |¢;| > (2nh)~! for every £ € E', then, as
in the proof of Proposition 2.1, we have that

nrh
nrh
/ |e2mT£j_1|T dr > 5 €€E£I.
0

Thus (see (3.7)) for every ¢ € E}
2 nrh
Fle) < — - (€)dr,
© < = [ as©ar

where gr,;(€) = [¢]"" /P |5, ;(€)] . By (1.14)
97.3(€) < Cll@rjllge < CW"(f57)mr
and we obtain the inequality

(3.9) FX(t) < Cw'(f;h)me -



140 Math. Nachr. 228 (2001)

Thus, we have proved that, in any case, there holds at least, one of the inequalities
(3.8) or (3.9). Therefore, by applying Lemma 3.1, we get

T n_ T
/ t"p/”*lF*(t)” dt < C [h*”’ Z/ t"p/”*ltﬁfm(t)p dt + h"Pw"(f; h)’}{p-l
0 =170 J
< O (f ) -
This completes the proof. O

Inequality (3.6) can also be expressed in terms of the Riesz potentials:

T - 1/p
(3.10) ( /0 tr/n 1 (4 (t)pdt> < T (T,

where A =n(1/p—1).
It follows from (3.6) that, for every non—zero f € HP(R") (0 <p < 1)

(3.11) (i) > Cr (5> 0),

where C'y is some positive constant depending on f.

The analogous property of the modulus of continuity in LP(R™) is well-known
— it follows from (2.2). But for 0 < p < 1 this property can fail for functions in LP
(for example if f(z) = x[0,1](z) (z € R), then w(f;8) < (26)'/7 for every 0 < p < 00).

In fact, a stronger inequality than (3.11) does hold. Namely, for every p > 0

(3.12) W (fi k) e < Ok"w" (f;8)mr (k€ N),

where the constant C' depends on p,r and n only. For the spaces HP in the unit
disk (3.12) follows from the results of P. OSwALD [Os]; by similar methods it can be
obtained for the functions in H?(R™) (see [C] and [So]).

Suppose that w is a function belonging to the class ., r € N. By H"(R") (0 <
p < 1) we shall denote the class of all f € HP(R") satisfying the condition

w'(f;6)mr = O(w(d)).

Note that, for every f € HP(R"), its modulus of continuity is equivalent to some
w € Q. Indeed, set

W(f;0) = ¢"suph "W (fih)me .
h>6

Then @(f; ) increases and @W(f; )0~ " decreases in |0, +oo[; therefore, @W(f;J) belongs
to Q.. Furthermore, in view of (3.12)

W' (f;0) e < W(f;0) < CW"(f;8)mr -

If w € Q,, then we set w, = w(27Y) (v € Z) and define the sequence {7,},c7z by
(2.22).
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Theorem 3.6. Let 0 < p < 1, and let n and r be positive integers and w € .
Suppose that p(t) is a non—negative, locally integrable function on [0,4o00[, such that,

if we denote A(t) = fot p(u) du, the function t~"P/"\(t) is decreasing in [0, +oo[. Then
(1) if

(3.13) Dnprl(w,p) = Y A2™)why < oo,
veZ

then, for every f € HZ"(R")
(3.14) | Faranat < o),

where F(&) = |¢[" /P | {(€)];
(2) if Dnp,r(w, p) = 00, then there exists f € H;""(R"), such that

(3.15) / TP dt = oo.

Proof. (1) We have
/ FoPpydt < 3 Aey,
0 veZ

where A, = A(2"") and &, = F*(27""~D)? — F*(2=")? (v € Z). It follows from (3.6)
that

o0 14
doej < Cuwb, > 2P < C27PuW.
j=v j=—o0

The argument continues as in Theorem 2.5.
(2) Denote by HP(R") the space of all complex—valued distributions on R™ such
that their real and imaginary parts belong to HP(R"), and set

1l gy = IR oy + 1S sy -
Choose an integer m > 1/p and, for each o > 0, consider the function

sin(2wox)

m
ga(w) — Ul—m( > e27ra'mzm’ reR.

>

This function and all its derivatives belong to H P(R). Moreover, we can estimate their
HP-norms by LP—norms. That way we easily get that

(3.16) < Coktt=tr (b =0,1,...).

1951 770
Also set

T,(z) = Hgg(wj), x € R".
j=1
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This function belongs to H?(R™). Moreover, by (3.16), we have

(1—1/p)
(3.17) ITollz, gy < Co™717
and
(3.18) DS T |7, gy S Com*O0 =1, .

Let us estimate the Fourier transform 1/“; from below. Observe that
sin(2wox) _

T = X[—o’,a’](x)a r€eR.

Set Q(U) = [_0'7 U]n: Do = XQ(O-) and CDU =Py Kk Py (m*fOId COnVOlution)_ Then
Ta(a:) = g(lfm)n(f;(l.)e27romz(zl+...+zn)

and
T,(&) = ®o(om—&i,y...om — fn)U(l_m)n .

It is easy to see that

(m—1)n
2,6 > (%) for all €€ Q(2'"™0).
2
Thus, we have that 1/“;(5) >0 for all £ € R™ and
(319)  Tylom—&,..com =) > 2070 i e Q(2' "),

Now let i, = 2"Pw,,. The sequence {n, }52, is increasing. It follows from the divergence
of the series (3.13) that 1, — oo as v — o0o. Let {vy } be the sequence of integers defined
by (2.25). Set 7, = Thvj+m and

[ee]
folx) = D w, 2P Vn(z), zeR".
k=1

In view of (3.17), this series converges in HP(R™). As in the proof of Theorem 2.7, we
get that the real and imaginary parts of fo belong to H»"(R").
Now, it follows from (3.19), that

fg(% — &y —En) > Cuw, 27/~ (0> )
for every ¢ € Q(2"++!), where v, = m2"*t ™. Let Fy(¢) = |fo(§)| |€[*(1=1/P) Then
Folvik =&,y — &) > cw,, for all €€ Q(2”’°+1) .
From here it follows that Fy (2"("**1) > c'w,, (¢’ > 0). Using this estimate, we obtain

[ee] [ee]
/ Fr@t)Pp(t)dt > > (A, — ) By (270 T)”
! k=1
> ¢S Cunr = M),

k=

> d(1-2" (ZAW wh, =X (1>p>-

[
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Observe now that

oo

y4 —
E Ap Wy, = 0.
k=1

This follows from the divergence of the series (3.13) by the same argument that the
one in the proof of Theorem 2.7. The proof is completed a

Thus, condition (3.13) is necessary and sufficient in order to have

/ FrPp(t) dt < oo
0
for every f € HY""(R").
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