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Rearrangement Estimates for Fourier Transforms in L
p and

H
p in Terms of Moduli of Continuity

By Jos�e Garc��a{Cuerva of Madrid and V��ctor I. Kolyada of Logro~no

(Received May 12, 1999; accepted March 31, 2000)

Abstract. One of the main purposes of this paper is to obtain estimates for Fourier transforms

of functions in Lp(Rn) (1 � p � 2) in terms of their moduli of continuity. More precisely, we study

the following problem: �nd sharp conditions on the modulus of continuity of a function f 2 Lp(Rn);

under which the non{increasing rearragement of f̂ , the Fourier transform of f , is integrable against a

given non{negative weight function �. We shall also study similar problems for the Fourier transforms

of functions or distributions in the Hardy spaces Hp(Rn) (0 < p � 1; n 2 N):

1. Introduction

One of the important questions in the theory of Fourier series is the following: How
are the smoothness properties of a function reected on the behaviour of its Fourier co-
eÆcients ? In 1914 S.N. Bernstein proved that for each function f 2Lip� (� > 1=2);
the sequence of its Fourier coeÆcients belongs to `1, and this property fails for � = 1=2:
Later on, more general estimates of Fourier coeÆcients were obtained by S.N. Bern-
stein, H. Weyl, O. Szasz, G.G. Lorentz, S. B. Stechkin, A.A. Konjushkov,

A. Pietsch and other authors (see [B], [Z] and [Pi]). We note that in the process
to obtain those estimates, the crucial rôle was played by the Hausdor�{Young and
Hardy{Littlewood inequalities.
Our goal is to obtain estimates for the rearrangements of Fourier transforms. We

start by recalling some de�nitions and known results.
We shall denote by S0(R

n) the class of all measurable functions f on Rn, which are
�nite almost everywhere and satisfy the condition

�f (y) � jfx 2 Rn : jf(x)j > ygj < 1 for all y > 0 :(1.1)

If a function f belongs to S0(R
n); then its non{increasing rearrangement is de�ned to

be the function f? which is non{increasing on ]0;1[ and is also equimeasurable with
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jf(x)j : Sometimes the functions in S0(R
n) are called rearrangeable. Set

f??(t) =
1

t

Z t

0

f?(u) du ; t > 0 :

For every t > 0 we have (see [B-S, p. 53])

f??(t) = sup
jEj=t

1

t

Z
E

jf(x)j dx :(1.2)

Besides, by the Hardy{Littlewood theorem (see [B-S, p. 44]), for every f; g 2 S0(R
n),Z

R
n

jf(x)g(x)j dx �
Z 1

0

f?(t)g?(t) dt :(1.3)

Let 0 < p; r <1: A function f 2 S0(R
n) belongs to the Lorentz space Lp;r(Rn) if

kfkp;r �
�Z 1

0

�
t1=pf?(t)

�r dt

t

�1=r
< 1 :

The Fourier transform f̂ of a function f 2 L1(Rn) is de�ned by

f̂(�) =

Z
R
n

f(x)e�2�{x�� dx :

If f 2 Lp(Rn) (1 < p � 2); then its Fourier transform satis�es the Hardy{Littlewood
inequality, namely (see [B-L] and [Z])�Z

R
n

j�jn(p�2)��f̂(�)��p d��1=p

� C kfkp :(1.4)

A stronger inequality is given by the Hardy{Littlewood{Paley theorem, which says
that for each f 2 Lp(Rn) (1 < p � 2)�Z 1

0

tp�2f̂ ?(t)p dt

�1=p
� C kfkp :(1.5)

Furthermore, if f 2 Lp;r(Rn) (1 < p � 2; r > 0); thenf̂
p0;r

� C kfkp;r ;(1.6)

(see [H], [J-S 1] and [St]), where, as usual, p0 denotes the exponent conjugate to p;
given by 1=p+ 1=p0 = 1: Inequality (1.5) is a particular case of (1.6) for r = p:
If we apply these inequalities to the �nite di�erences or to the derivatives of a given

function, we can get estimates for the Fourier transform of the function in terms of the
Lp{norm (1 < p � 2) of the corresponding di�erential characteristic. In particular,
taking into account that

��f̂(�)�� � j�j�r
nX

k=1

��dDr
kf(�)

�� (r 2 N) ;(1.7)
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we immediately obtain from (1.5) that for each function f 2 W r
p (R

n); (n; r 2 N,
1 < p � 2) �Z 1

0

tpr=n+p�2f̂ ?(t)p dt

�1=p
� C

nX
k=1

kDr
kkp :(1.8)

The notation W r
p (R

n) (1 � p < 1; r 2 N) stands for the Sobolev space of all
functions f 2 Lp(Rn) for which every weak derivative Dsf; s = (s1; : : : ; sn); of order
jsj = s1 + � � � + sn � r exists and belongs to Lp(Rn): The right{hand side of (1.8)
contains only the norms of non{mixed derivatives. But it is well{known that, for
1 < p <1 X

jsj=r

kDsfkp � C

nX
k=1

kDr
kfkp :(1.9)

However (1.9) fails for p = 1 (see [B-I-N]).
For p = 1 the inequality (1.4) does not hold and it is impossible to use the method

described above. In fact, for the Fourier transforms of functions in L1(R); the only

available estimates are those based upon the obvious inequality
f̂ 

1
� kfk1:

Nevertheless, the situation is quite di�erent in the multi{dimensional case. Namely,
the following theorem was proved in [Bo1] and [P-W]. See also [Bo2].

Theorem 1.1. If f 2W r
1 (R

n) (n � 2; r 2 N); thenZ
R
n

��f̂(�)�� j�jr�n d� � C
X
jsj=r

kDsfk1 :(1.10)

Contrary to what happened in (1.8), the right{hand side of (1.10) contains all the
derivatives of order r: It was proved in [Ko2] that the norms of the mixed derivatives
can be omitted.
Denote by fW r

p (R
n) (1 � p < 1; r 2 N) the space of all functions f 2 Lp(Rn); for

which every weak derivative Dr
kf � @rf=@xrk exists and belongs to Lp(Rn): By (1.9)

we have fW r
p (R

n) =W r
p (R

n) for 1 < p <1; but this is not true for p = 1:
The following result was obtained in [Ko2].

Theorem 1.2. Let f 2 fW r
1 (R

n) (n � 2; r 2 N): ThenZ
R
n

��f̂(�)�� j�jr�n d� � C

nX
k=1

kDr
kfk1(1.11)

and Z 1

0

f̂ ?(t)tr=n�1 dt � C

nX
k=1

kDr
kfk1 :(1.12)

It follows from (1.3) that, for r � n; the inequality (1.12) is stronger than (1.11).
On the contrary, for r > n; (1.11) implies (1.12).
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Of course, (1.11) and (1.12) fail to hold for n = 1: In particular, it is well{known

that there exists f 2W 1
1 (R); such that f̂ 62 L1(R):

One of the main purposes of this paper is to obtain estimates for Fourier transforms
of functions in Lp(Rn) (1 � p � 2) in terms of their moduli of continuity. More
precisely, we study the following problem: �nd sharp conditions on the modulus of
continuity of a function f 2 Lp(Rn); under whichZ 1

0

f̂ ?(t)p�(t) dt < 1 ;(1.13)

where � is a non{negative weight function. In other words, we ask how the inequality
(1.5) improves if we put some additional conditions on the smoothness of f: As was
mentioned above, for 1 < p � 2; we will use the inequality (1.5). For p = 1 and n � 2;
the crucial rôle will be played by the inequality (1.12). We must point out that the
results obtained do not extend to the case n = p = 1:

We shall also study similar problems for the Fourier transforms of functions or
distributions in the Hardy spaces Hp(Rn) (0 < p � 1; n 2 N):
It is well{known that for every f 2 Hp(Rn) (0 < p � 1); its Fourier transform f̂ is

a continuous function on Rn satisfying the inequalities��f̂(�)�� � C j�jn(1=p�1) kfkHp ;(1.14) �Z
R
n

j�jn(p�2)��f̂(�)��p d��1=p � C kfkHp(1.15)

(see [F-S], [G-R] and [T-W]). Of course, the inequality (1.15) cannot have a \rear-

rangement"counterpart of the form (1.5), since f̂ need not belong to S0(R
n): Thus,

our starting point will be other type of rearrangement inequality, which can be in-
terpreted in terms of the Riesz potentials. It follows easily from (1.14) that for each
f 2 Hp(Rn) (0 < p � 1); the function

F (�) = j�jn(1�1=p)��f̂(�)��
belongs to the class S0(R

n) (see the de�nition in (1.1)). Thus, instead of (1.13), we
study the convergence of the integralZ 1

0

F ?(t)p�(t) dt :(1.16)

The main results of this paper are Theorems 2.5, 2.7 and 3.6. These theorems give
necessary and suÆcient conditions for the convergence of the integral in (1.13) or,
respectively (1.16), for each f belonging to a class of functions having a given majorant
for their Lp{ (or, respectively Hp{) moduli of continuity.

In view of (1.3), the most interesting case is when the weight function � is decreasing.

We should mention the paper [J-S 2], in which some weighted rearrangement in-
equalities for the Fourier transform were studied.
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2. Fourier transforms of functions in Lp(Rn)

Let f be a function de�ned on Rn: If r 2 N and 1 � j � n; we set

�r
j (h)f(x) =

rX
k=0

(�1)r�k
�
r
k

�
f(x+ khej) ;(2.1)

where x 2 Rn; h 2 R, and ej is the j{th unit vector from the canonical basis of Rn:
If the function f 2 Lp(Rn) (1 � p <1); then its Lp{modulus of continuity of order

r with respect to the j{th variable is de�ned by

!rj (f ; Æ)p = sup
0�h�Æ

�r
j (h)f


p

(0 � Æ <1) :

We also set

!r(f ; Æ)p =

nX
j=1

!rj (f ; Æ)p :

It is easy to see [N, p. 147], that for every � 2 N,
!rj (f ; �Æ)p � �r!rj (f ; Æ)p (1 � j � n) :(2.2)

If there exists a weak derivative Dr
jf 2 Lp(Rn); then

!rj (f ; Æ)p � Ær
Dr

jf

p

(j = 1; : : : ; n) :(2.3)

Furthermore, for f 2 Lp(Rn); r 2 N; h > 0 and 1 � j � n; we set

Srh;jf(x) = h�r
Z
[0;h]r

rX
k=1

(�1)k�1
�
r
k

�
f(x+ k(u1 + � � �+ ur)ej) du

(see [B-S, p. 340]). It is easy to see thatSrh;jfp � 2r kfkp ;
f � Srh;jf


p
� !rj (f ; rh)p :(2.4)

Besides, there exists a weak derivative Dr
j

�
Srh;jf

�
andDr

j

�
Srh;jf

�
p
� Ch�r!rj (f ;h)p :(2.5)

Now, if we set

fh(x) = Srh;1 : : : S
r
h;nf(x) ;(2.6)

then it follows from (2.4) and (2.5) that

kf � fhkp � C!r(f ;h)p(2.7)

and Dr
jfh

p
� Ch�r!rj (f ;h)p (j = 1; : : : ; n) :(2.8)

In this section we shall search for estimates of rearrangements of Fourier transforms
of functions in Lp(Rn) (1 � p � 2); in terms of their moduli of continuity. We begin
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with the case 1 < p � 2, which is simpler and can be analyzed completely by means
of the inequality (1.5).

Proposition 2.1. Let f 2 Lp(Rn) (1 < p � 2; n 2 N) and r 2 N. Then, for every

T > 0 �Z 1

T

tp�2f̂ ?(t)p dt

�1=p
� C!r

�
f ;T�1=n

�
p

(2.9)

and  Z T

0

tpr=n+p�2f̂ ?(t)p dt

!1=p

� CT r=n!r
�
f ;T�1=n

�
p
;(2.10)

with a constant C depending only on p; n and r:

Proof. For � > 0 and j = 1; : : : ; n set

'�;j(x) = �r
j (�)f(x) :

Then d'�;j(�) =
�
e2�{��j � 1

�r
f̂(�) :(2.11)

For T � t <1 denote

Et =
n
� 2 Rn :

��f̂(�)�� � f̂ ?(t)
o
:

Then jEtj � t: There exists j � j(t) such that the set

E0t �
n
� 2 Et :

���j�� � T 1=n=2
o

has measure jE0tj � jEtj=(2n).
Let h = T�1=n: For every � 2 E0t we haveZ rh

0

��e2�{�j� � 1
��r d� �

Z rh

0

�
1� cos 2��j�

�r
d�

�
Z rh

0

�
1� r cos 2��j�

�
d�

� rh

 
1� 1

2�h
���j��

!

� rh

2
:

Thus, for every � 2 E0t (see (2.11))

f̂ ?(t) � ��f̂(�)�� � 2

rh

Z rh

0

jd'�;j(�)j d� ;
and we have

f̂ ?(t) � 4n

rh jEtj
Z rh

0

d�

Z
E0

t

jd'�;j(�)j d� � 4n

rh

Z rh

0

d'�;j ??(t) d� ; j = j(t) :
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By applying (1.5) and Hardy's inequality ([B-S, p. 124]), we obtain�Z 1

T

tp�2f̂ ?(t)p dt

�1=p
� C

nX
j=1

 
1

h

Z rh

0

d�

Z 1

0

d'�;j ??(t)ptp�2 dt!1=p

� C

nX
j=1

 
1

h

Z rh

0

k'�;jkpp d�
!1=p

� C!r(f ;h)p :

Thus, we have proved (2.9).
Now, let fh

�
h = T�1=n

�
be the function de�ned by (2.6). Then, by applying

inequalities (1.5) and (1.8) to f � fh and fh respectively and using (2.7) and (2.8), we
obtain (with � = r=n+ 1=p0) Z T

0

t�p�1f̂ ?(t)p dt

!1=p

� T r=n

�Z 1

0

tp�2 df � fh
?
�
t

2

�p
dt

�1=p

+

�Z 1

0

t�p�1f̂h
?
�
t

2

�p
dt

�1=p
� C

 
h�r kf � fhkp +

nX
j=1

Dr
jfh

p

!
� Ch�r!r(f ;h)p :

Now the proof is complete. 2

Corollary 2.2. If f 2 Lp(Rn) (1 < p � 2; n 2 N) and r 2 N; then
f̂ ?(t) � Ct1=p�1!r(f ; t�1=n)p :(2.12)

Now, let us consider the case p = 1: We �rst observe that the inequality (2.12) holds
in this case too. Indeed, let f 2 L1(Rn): For each � 2 Rn; there exists j such that���j �� � j�j=n: If we use (2.11) with � = 1=

�
2
���j���; we get��f̂(�)�� = 2�r jd'�;j(�)j � 2�r

Z
R
n

j'�;j(x)j dx � 2�r!r
�
f ;

n

2 j�j
�
1

:

From here it immediately follows that

f̂ ?(t) � Cn;r!
r
�
f ; t�1=n

�
1
:(2.13)

Let 1 � p; � < 1; � > 0 and r > � (r 2 N): The Besov space B�
p;�(R

n) consists of
all those functions f 2 Lp(Rn) for which

kfkb�
p;�

�
�Z 1

0

�
t��!r(f ; t)p

�� dt

t

�1=�
< 1 :

If we choose di�erent integers r > �; we obtain equivalent seminorms (see [B-I-N]).
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From the inequalities (2.12) and (2.13), we immediately get

Corollary 2.3. Let 1 � p � 2; 1 � � < 1; � > 0 and q = (�=n + 1=p0)�1: If
f 2 B�

p;�(R
n); then f̂

Lq;�
� kfkb�

p;�
:

This result was obtained by other methods by A. Pietsch (see [Pi, p. 270]). Setting

� = 1 and � = n=p; we obtain the Bernstein{Szasz theorem: if f 2 B
n=p
p;1 (R

n) (1 �
p � 2); then f̂ 2 L1(Rn) (see [Sz] and [Z]).
Note that the estimate (2.13) is sharp in the case n = 1 (see Proposition 2.8 below).

But for n � 2 it can be strengthened.

Proposition 2.4. Let f 2 L1(Rn) (n � 2) and r 2 N: Then, for each T > 0Z T

0

tr=n�1f̂ ?(t) dt � Cn;rT
r=n!r

�
f ;T�1=n

�
1
:(2.14)

Proof. Let h = T�1=n: For every t > 0; we have

f̂ ?(t) � cfh ?(t) +  df � fh

1

(where fh is de�ned by (2.6)). Furthermore by (2.7) df � fh

1

� kf � fhk1 � C!r(f ;h)1 :

On the other hand, it follows from (1.12) and (2.8) thatZ T

0

tr=n�1cfh ?(t) dt � C

nX
j=1

Dr
j (fh)


1
� Ch�r!r(f ;h)1 :

This completes the proof. 2

Inequality (2.14) is an exact counterpart of (2.10), but it arises from a completely
di�erent reasoning. We remark once more that (2.14) does not hold for n = 1:
If

!r(f ; Æ)1 = O(Ær) ;(2.15)

then it follows from (2.14) thatZ 1

0

tr=n�1f̂ ?(t) dt � sup
Æ>0

Æ�r!r(f ; Æ)1 :

Note that if f 2 fW r
1 (R

n); then (2.15) holds (see (2.3)), but the converse is not true.
By using Propositions 2.1 and 2.4, we obtain a weighted rearrangement inequality

for the Fourier transform.

Theorem 2.5. Let r 2 N and 1 < p � 2; n 2 N or p = 1; n � 2: Also, let � be a

non{negative locally integrable function on [0;+1[ and set �(t) =
R t
0 �(u) du: Suppose
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that �(t)t1�p increases and �(t)t��p decreases on ]0;+1[ ; with � = r=n + 1=p0:1)

Then, for each function f 2 Lp(Rn)Z 1

0

f̂ ?(t)p�(t) dt � C
X
�2Z

�(2n�)2n�(1�p)!r(f ; 2��)pp� ;(2.16)

where 2)

� =
1

!�
min

�
!� � !�+1; !� � 2�r!��1

�
;(2.17)

with

!� = !r
�
f ; 2��

�
p

(� 2 Z) :
Proof. We follow the same scheme used in [Ko1]. We haveZ 1

0

f̂ ?(t)p�(t) dt �
X
�2Z

f̂ ?(2n�)p
�
�
�
2n(�+1)

�� �(2n�)
�

=
X
�2Z

�(2n�)
�
f̂ ?
�
2n(��1)

�p � f̂ ?(2n�)p
�

=
X
�2Z

d�"� ;

where we have denoted d� = �(2n�)2n�(1�p) and

"� = 2n�(p�1)
�
f̂ ?
�
2n(��1)

�p � f̂ ?(2n�)p
�
:

Recall that, by our assumption, the sequence fd�g�2Z is increasing. Also, by Propo-
sitions 2.1 and 2.4, we have

1X
j=�

"j � C!p� ;

�X
j=�1

2jrp"j � C2�rp!p� :(2.18)

Let
�0 = fk : !k+1 � 2�r!k�1g ; �00 =

�
k : !k+1 < 2�r!k�1

	
:

Since the sequence f!kgk2Z is bounded, it is clear that there exists some k0 2 Z such
that k 2 �0 for all k � k0:
If � 2 �0 but �+ 1 2 �00; then

� = (!� � !�+1)=!� ; �+1 =
�
!�+1 � 2�r!�

�
=!�+1 :

Thus,

� + �+1 � 1� 2�r
�
� 2 �0; �+ 1 2 �00

�
:(2.19)

Let � and � be integers such that � < � and [�; �] \ �00 = ;: We estimate the sum

S0�;� =

�X
k=�

dk"k :

1) Note that in view of the inequalities (1.5), (1.8) and (1.12), these conditions are quite natural.
2) In view of (2.2) we have k � 0: Of course, we assume that f is not equivalent to 0:
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Let ak = dk � dk�1 for � + 1 � k � � and a� = d� : By (2.18)

S0�;� =

�X
k=�

"k

kX
j=�

aj =

�X
j=�

aj

�X
k=j

"k � C

�X
j=�

aj!
p
j

= C

 
�X

j=�

aj

�X
k=j

(!pk � !pk+1) + d�!
p
�+1

!

� Cp

 
�X

k=�

dk!
p
kk + d�!

p
�+1

!
:

If �+ 1 2 �00; then by (2.19) we obtain

S0�;� � C

�+1X
k=�

dk!
p
kk :

If all the integers k > � belong to �0; then the convergence of the series in the right{
hand side of (2.16) will imply that !p�d� ! 0 as �!1: Thus we get thatX

k2�0

dk"k � C
X
k2Z

dk!
p
kk :

Now suppose that � and � are integers such that �+ 1 � �; [�+ 1; �] \ �0 = ; and
� 2 �0: Consider the sum

S00�;� =
�X

k=�+1

dk"k :

Denote �k = 2kr!k: Also, let bk = 2�krpdk � 2�(k+1)rpdk+1 for � + 1 � k < � and
b� = 2��rpd�

�
recall that 2�krpdk is decreasing

�
. Then by (2.18) and (2.19)

S00�;� =

�X
k=�+1

2krp"k

�X
j=k

bj =

�X
j=�+1

bj

jX
k=�+1

2krp"k

� C

�X
j=�+1

bj�
p
j

= C

0@ �X
j=�+1

bj

jX
k=�+1

�
�pk � �pk�1

�
+ 2�(�+1)rpd�+1�

p
�

1A
� C

�X
k=�

dk!
p
kk :

Thus we get X
k2�00

dk"k � C
X
k2Z

dk!
p
kk
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and the proof is complete. 2

Remark 2.6. From the estimates (2.12) and (2.13) it follows at once thatZ 1

0

f̂ ?(t)p�(t) dt � C

Z 1

0

�(t)t1�p!r
�
f ; t�1=n

�p
p
dt :(2.20)

The integral in the right{hand side of (2.20) is equivalent to the sumX
�2Z

�(2n�)2n�(1�p)
�
!p� � !p�+1

�
; !� = !r(f ; 2��)p :

The estimate (2.20) is not sharp if !r(f ; Æ)p decreases very rapidly as Æ ! 0 (so that
its order is close to the best possible O(Ær)). For example, if for some � > 0

!r(f ; Æ)p = O
�
Ær log�(1=Æ)

�
; Æ ! 0 ;

using (2.20) we must require thatZ 1

2

�(t)t��p(log t)�p dt < 1
�
� =

r

n
+

1

p0

�
to make sure that the integral Z 1

0

f̂ ?(t)p�(t) dt(2.21)

is convergent. But if we use (2.16), we easily see that the weaker conditionZ 1

2

�(t)t��p(log t)�p�1 dt < 1

already implies the convergence of (2.21)

Now we are going to prove that Theorem 2.5 is sharp.
Let r 2 N: We shall say that a function !(Æ) de�ned on [0;+1[ belongs to the class


r if it satis�es the following three conditions:
1. !(Æ) � 0 for all Æ and !(0) = 0;
2. !(Æ) is increasing, continuous and bounded on [0;+1[ ;
3. !(2Æ) � 2r!(Æ); 0 � Æ <1:
Note that for each function f 2 Lp(Rn) (1 � p < 1) its modulus of continuity

!r(f ; Æ)p belongs to 
r (see (2.2)).
If ! 2 
r and 1 � p <1; then we shall denote by L!;rp (Rn) the class of all functions

f 2 Lp(Rn) such that

!r(f ; Æ)p = O(!(Æ)) :

Theorem 2.7. Let n; r 2 N; ! 2 
r and 1 � p � 2: Also, let �(t) be a non{negative

locally integrable function on [0;1[ and set �(t) =
R t
0
�(u) du: Suppose that �(t)t1�p

increases and �(t)t��p decreases (� = r=n+ 1=p0). Let !� = !(2��);

� =
1

!�
min

�
!� � !�+1; !� � 2�r!��1

�
:(2.22)

If the series
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1X
�=0

�(2n�)2n�(1�p)!p��(2.23)

diverges, then there exists a function f 2 L!;rp (Rn) such thatZ 1

1

f̂ ?(t)p�(t) dt = 1 :(2.24)

Proof. Set �� = 2�r!� : The sequence f��g is increasing. It follows from the diver-
gence of the series (2.23) that �� !1 as � !1: Set �1 = 0 and 3)

�k+1 = min

�
� : !� � 1

2
!�k and �� � 2r��k

�
:(2.25)

For each k 2 N at least one of the two following inequalities holds

!�k+1 � 1

4
!�k(2.26)

or

��k+1 � 4r��k :(2.27)

Furthermore, let

VN (x) =
1

Nn

nY
j=1

Z 2N

N

sin 2��xj
�xj

d�

be the De la Vall�ee{Poussin kernel. Then ( see [N])

kVNkp � CN1�1=p :(2.28)

Denote Uk(x) = V2�k (x) and consider the function

f(x) =
1X
k=0

!�k2
n�k(1=p�1)Uk(x) :(2.29)

It follows from (2.28) that the series in (2.29) converges in Lp(Rn): Let us estimate
the Lp{modulus of continuity of f: Let 2�s�1 < h � 2�s (s 2 N): Using (2.3), (2.28)
and the properties of the kernel Vn (see [N]), we have (1 � j � n)�r

j (h)f

p
�

sX
k=0

!�k2
n�k(1=p�1)

�r
j (h)Uk


p
+ 2r

1X
k=s+1

!�k2
n�k(1=p�1)kUkkp

� C

 
hr

sX
k=0

��k +
1X

k=s+1

!�k

!
� C

�
hr��s + !�s+1

�
:

Since the function Æ�r!(Æ) is almost decreasing, we get�r
j (h)f


p
� C!(h) ; j = 1 ; : : : ; n :

3) Such sequences were used before by K. I. Oskolkov [O].
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Thus, f 2 L!;rp (Rn):

Furthermore, for every N 2 N; we have (see [N, p. 305]) cVN (�) � 0 (� 2 Rn) andcVN (�) = 1 if
���j �� � N; (j = 1; : : : ; n): It follows that

f̂ ?
�
2n(�k+1)

� � !�k2
n�k(1=p�1) :(2.30)

Using this estimate and denoting �� = �(2n�); we obtainZ 1

1

f̂ ?(t)p�(t) dt �
1X
k=0

f̂ ?(2n�k+1)p
�
��k+1 � ��k

�
�

1X
k=1

!p�k2
n�k(1�p)

�
��k � ��k�1

�
� (1� 2�p)

1X
k=1

!p�k2
n�k(1�p)��k � !p(1)�(1) :

It remains to prove that

1X
k=1

!p�k2
n�k(1�p)��k = 1 :(2.31)

Denote d� = 2n�(1�p)�� : By our assumption, the sequence fd�g is increasing. Let

Sk =

�k+1�1X
�=�k

d�!
p
�� :

Suppose that for some k 2 N; (2.26) holds. Then we have, using also (2.25)

Sk � d�k+1

�k+1�1X
�=�k

!p�1� (!� � !�+1) � d�k+1!
p
�k � 4pd�k+1!

p
�k+1 :

Now suppose that (2.27) holds. Recall that the sequence f2��rpd�g is decreasing.
Thus we get

Sk �
�k+1�1X
�=�k

2��rpd��
p�1
� (�� � ���1) � 2��krpd�k�

p
�k+1 � 4rpd�k!

p
�k :

From these estimates and the divergence of the series (2.23), we get (2.31). The proof
is now complete. 2

Inequality (2.30) shows that for every p; such that 1 � p � 2; every n 2 N and every
order for the modulus of continuity, the estimate (2.12) is sharp for the values t = 2n�k ;
where f�kg is the sequence de�ned by (2.25). At the same time, for 1 < p � 2; n � 1
or p = 1; n � 2; this estimate can be strengthened in a certain \integral" sense (see
(2.9), (2.10) and (2.14)). Now we shall show that for p = n = 1; the situation is quite
di�erent. In this case the estimate (2.13) is sharp for all values t > 0 simultaneously.
For simplicity we shall consider the case r = 1:
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Proposition 2.8. For each ! 2 
1; there exists a function f 2 L!;11 (R); such that,

for every t > 0

f̂ ?(t) � C!

�
1

t

�
;(2.32)

where C is a positive constant.

Proof. Denote !� = !(2��); �� = 2�!� : Let f�kg be the sequence de�ned by (2.25).
Furthermore, let �k = [0; 2��k ] and fk(x) = 2�k!�k��k

(x): Let

f(x) =

1X
k=0

fk(x) ;

where the series converges in L1(R):
Suppose 2��s+1 < h � 2��s : Then (see (2.25))

k�(h)fk1 �
sX

k=0

k�(h)fkk1 + 2

1X
k=s+1

kfkk1

� 2

 
h

sX
k=0

2�k!�k +

1X
k=s+1

!�k

!
� 8!(h) :

Thus f 2 L!;11 (R):
Next we have

f̂(�) =

1X
k=0

2�k!�k
1� e�2�{�2

��k

2�{�
:

Thus ���f̂(�)��� � 1

� j�j
1X
k=0

2�k!�k sin
2(��2��k ) :

Let 2�s < t � 2�s+1 : For each k = 0; 1; : : : ; there holds at least one of the inequalities

(a) 4!�k+1 � !�k or (b) ��k+1 � 4��k :(2.33)

Suppose that, for k = s; we have (a). Then, for any � 2 [2�s+1�2; 2�s+1�1]��f̂(�)�� � 1

2�
!�s+1 � 1

8�
!

�
1

t

�
:

Thus

f̂ ?
�
t

4

�
� 1

8�
!

�
1

t

�
:

Now suppose that, for k = s; there holds the inequality (b) in (2.33). Let

Et =

�
� 2 [t; 4t] :

��sin ���2��s��� � 1p
2

�
:
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It is easy to see that jEtj � t=4: For each � 2 Et��f̂(�)�� � 1

�
p
2 �

2�s!�s � 1

16�
p
2t

2�s+1!�s+1 � C!

�
1

t

�
(C > 0): Thus we get f̂ ?

�
t
4

� � C!
�
1
t

�
: And the proof is �nished. 2

3. Fourier transforms of functions or distributions in the Hardy
spaces Hp(Rn)

The notation Hp(Rn) will have for us the same meaning as in Chapter III, Section 4
of [G-R]. That is, Hp(Rn) will be a space of real{valued tempered distributions f(x)
in Rn; which are the boundary values of harmonic functions u(x; t) in the upper
half space Rn+1

+ = R
n� ]0;1[ , having a non{tangential maximal function mu(x) =

supjy�xj<t ju(y; t)j in Lp(Rn):
We shall use two other ways to look at Hp: First of all, in the one{dimensional case,

each f 2 Hp(R) corresponds to a holomorphic function in R2
+; F = u + {v having

supt>0
�R
R
jF (x+ {t)jp dx�1=p < 1: This supremum is equivalent to kmukp ; which

is, by de�nition, kfkHp : Still in the one{dimensional case, there is another quantity

equivalent to kfkHp ; which we shall �nd useful; namely
�R
R
jF (x)jp dx�1=p ; where

F (x) = limt!0 F (x + {t); a limit that is shown to exist for a. e. x 2 R: For this view
of Hp see Chapter 1 of [G-R].
Finally, the other convenient way to look at Hp will be the atomic decomposition,

that we shall need below. For this and additional information on Hardy spaces, we
refer the reader to [G-R].
Let f 2 Hp(Rn); 0 < p < 1: For r 2 N and 1 � j � n; we denote (see (2.1)) for

0 � Æ <1;

!rj (f ; Æ)Hp = sup
0�h�Æ

�r
j (h)f


Hp

; !r(f ; Æ)Hp =

nX
j=1

!rj (f ; Æ)Hp :

If f 2 Hp(Rn); 0 < p <1; and there exists a derivative Dr
jf 2 Hp(Rn) (in the sense

of distributions), then

!rj (f ; Æ)Hp � CÆr
Dr

jf

Hp

:(3.1)

This inequality was obtained in [Os] by using atomic decompositions.
We shall use the following re�nement of the inequality (1.15).

Lemma 3.1. Let n 2 N; 0 < p � 1 and " > 0: Then there exists a constant C such

that for every f 2 Hp(Rn)�Z 1

0

t"p�1F ?
" (t)

p dt

�1=p
� C kfkHp ;(3.2)

where F"(�) = j�jn(1�1=p�")��f̂(�)��.



138 Math. Nachr. 228 (2001)

Proof. Set � = n(" + 1=p� 1); N = [n(1=p� 1)]: It is suÆcient to prove (3.2) for
small "; so we may assume that N + 1� � � 0:
First we consider the case when f is a unit p{atom (see [G-R]). In this case, it

follows from (1.14) and the inequality
��f̂(�)�� � C j�jN+1 (see [T-W]), that

kF"k1 � C :(3.3)

Furthermore, denote Et=f� 2 Rn : F"(�) � F ?
" (t)g ; then jEtj�t: Let St be the com-

plement of the ball inRn of measure t=2 and centered at the origin. Then jEt\Stj � t=2
and we have

F ?
" (t)

p � 2

t

Z
Et\St

jF"(�)jp d�

� 2

t

�Z
St

j�j�2�p=(2�p) d�
�1�p=2�Z

R
n

jf̂(�)j2 d�
�p=2

� Ctp(1=2�")�1 :

Using this estimate and (3.3), we get�Z 1

0

t"p�2 dt

Z t

0

F ?
" (u)

p du

�1=p
� C :(3.4)

After re{scaling, it follows that (3.4) holds with the same constant for any p{atom f:
In the general case, we shall use the atomic decomposition f =

P
j �jaj (see [G-R]).

We have f̂ =
P

j �j baj and F"(�) �
P

j j�j jAj(�); where Aj(�) = j�j�� j baj(�)j : More-
over Z t

0

F ?
" (u)

p du �
X
j

j�j jp
Z t

0

A?
j (u)

p du :

Thus the validity of (3.4) for p{atoms implies (3.2) for each f 2 Hp: The lemma is
proved. 2

Remark 3.2. For the function '0(�) = 1=j�j (� 2 Rn) we have '?0(t) = (vn=t)
1=n;

where vn is the measure of the n{dimensional unit ball. Thus it follows from (1.3)
that (3.2) gives a strengthening of Hardy's inequality (1.15).

Remark 3.3. Note that F"(�) =
��dI�f(�)��; where I�f is a Riesz potential of f: Thus,

the inequality (3.2) can also be derived from the embedding theorems (see [T-W] and
[F-R-S]) and the inequality (1.6). However, we chose to give a more direct proof.

Next we obtain

Corollary 3.4. Let f 2 Hp(Rn) (0 < p � 1; n 2 N) and r 2 N: Suppose that there

exist partial derivatives Dr
jf 2 Hp(Rn) (j = 1; : : : ; n): Then�Z 1

0

trp=n�1F ?(t)p dt

�1=p
� C

nX
j=1

Dr
jf

Hp

;(3.5)
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where F (�) = j�jn(1�1=p)��f̂(�)��:
Proof. Indeed, it is suÆcient to apply Lemma 3.1 with " = r=n to each of the

derivatives Dr
jf and take into account (1.7). 2

Inequality (3.5) is a particular case of the following theorem.

Theorem 3.5. Let 0 < p � 1 and n; r 2 N: There exists a constant C such that for

every f 2 Hp(Rn) and every T > 0 Z T

0

trp=n�1F ?(t)p dt

!1=p
� CT r=n!r

�
f ;T�1=n

�
Hp ;(3.6)

where F (�) = j�jn(1�1=p)��f̂(�)��:
Proof. Set '�;j(x) = �r

j (�)f(x) (� > 0; j = 1; : : : ; n): Then

b'�;j(�) =
�
e2�{��j � 1

�r
f̂(�) :(3.7)

Also, let t 2 ]0; T ] and Et = f� 2 Rn : F (�) � F ?(t)g : Then jEtj � t: There exists
j � j(t); such that the set E0t = f� 2 Et : j�j j � j�j=ng has, at least, measure t=n:
Denote h = T�1=n: Suppose, �rst, that E0t � U; where U is the ball of radius T 1=n=2
centered at the origin. Then, for every � 2 E0t; we have��e2�{�jh � 1

�� � �� sin ���jh��� � 2
���j ��h � j�jh=n :

Denoting ��;j(�) = j�j(1�1=p�r=n)njb'�;j(�)j; we get
F (�) � (n=h)r�h;j(�) ; � 2 E0t :

Since F (�) � F ?(t) for every � 2 E0t and jE0tj � t=n; it follows that

F ?(t) � (n=h)r�?
h;j(t=n) :(3.8)

Now suppose that E00t � E0t n U 6= ;: Since j�j j � (2nh)�1 for every � 2 E00t ; then, as
in the proof of Proposition 2.1, we have thatZ nrh

0

��e2�{��j � 1
��r d� � nrh

2
; � 2 E00t :

Thus (see (3.7)) for every � 2 E00t

F (�) � 2

nrh

Z nrh

0

g�;j(�) d� ;

where g�;j(�) = j�jn(1�1=p) jb'�;j(�)j : By (1.14)

g�;j(�) � C kb'�;jkHp � C!r(f ; �)Hp

and we obtain the inequality

F ?(t) � C!r(f ;h)Hp :(3.9)
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Thus, we have proved that, in any case, there holds at least, one of the inequalities
(3.8) or (3.9). Therefore, by applying Lemma 3.1, we get

Z T

0

trp=n�1F ?(t)p dt � C

24h�rp nX
j=1

Z T

0

trp=n�1�?
h;j(t)

p dt+ h�rp!r(f ;h)pHp

35
� C 0h�rp!r(f ;h)pHp :

This completes the proof. 2

Inequality (3.6) can also be expressed in terms of the Riesz potentials: Z T

0

trp=n�1
�dI�f�?(t)p dt!1=p � CT r=n!r

�
f ;T�1=n

�
Hp ;(3.10)

where � = n(1=p� 1):

It follows from (3.6) that, for every non{zero f 2 Hp(Rn) (0 < p � 1)

!r(f ; Æ)Hp � Cf Æ
r (Æ � 0) ;(3.11)

where Cf is some positive constant depending on f:

The analogous property of the modulus of continuity in Lp(Rn) is well{known
| it follows from (2.2). But for 0 < p < 1 this property can fail for functions in Lp�
for example if f(x) = �[0;1](x) (x 2 R); then !(f ; Æ) � (2Æ)1=p for every 0 < p <1�.
In fact, a stronger inequality than (3.11) does hold. Namely, for every p > 0

!r(f ; kÆ)Hp � Ckr!r(f ; Æ)Hp (k 2 N) ;(3.12)

where the constant C depends on p; r and n only. For the spaces Hp in the unit
disk (3.12) follows from the results of P. Oswald [Os]; by similar methods it can be
obtained for the functions in Hp(Rn) (see [C] and [So]).

Suppose that ! is a function belonging to the class 
r; r 2 N: By H!;r
p (Rn) (0 <

p � 1) we shall denote the class of all f 2 Hp(Rn) satisfying the condition

!r(f ; Æ)Hp = O(!(Æ)) :

Note that, for every f 2 Hp(Rn); its modulus of continuity is equivalent to some
! 2 
r: Indeed, set

!(f ; Æ) = Ær sup
h�Æ

h�r!r(f ;h)Hp :

Then !(f ; Æ) increases and !(f ; Æ)Æ�r decreases in ]0;+1[ ; therefore, !(f ; Æ) belongs
to 
r: Furthermore, in view of (3.12)

!r(f ; Æ)Hp � !(f ; Æ) � C!r(f ; Æ)Hp :

If ! 2 
r; then we set !� = !(2��) (� 2 Z) and de�ne the sequence f�g�2Z by
(2.22).
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Theorem 3.6. Let 0 < p � 1; and let n and r be positive integers and ! 2 
r:
Suppose that �(t) is a non{negative, locally integrable function on [0;+1[; such that,

if we denote �(t) =
R t
0 �(u) du; the function t�rp=n�(t) is decreasing in [0;+1[: Then

(1) if

Dn;p;r(!; �) �
X
�2Z

�(2n�)!p�� < 1 ;(3.13)

then, for every f 2 H!;r
p (Rn)Z 1

0

F ?(t)p�(t) dt � CDn;p;r(!; �) ;(3.14)

where F (�) = j�jn(1�1=p)��f̂(�)��;
(2) if Dn;p;r(!; �) =1; then there exists f 2 H!;r

p (Rn); such thatZ 1

1

F ?(t)p�(t) dt = 1 :(3.15)

Proof. (1) We have Z 1

0

F ?(t)p�(t) dt �
X
�2Z

��"� ;

where �� = �(2n�) and "� = F ?
�
2�n(��1)

�p�F ?(2�n�)p (� 2 Z): It follows from (3.6)
that

1X
j=�

"j � C!p� ;

�X
j=�1

2jrp"j � C2�rp!p� :

The argument continues as in Theorem 2.5.
(2) Denote by eHp(Rn) the space of all complex{valued distributions on Rn such

that their real and imaginary parts belong to Hp(Rn); and set

kfkeHp(Rn)
= k<fkHp(Rn) + k=fkHp(Rn) :

Choose an integer m > 1=p and, for each � > 0; consider the function

g�(x) = �1�m
�
sin(2��x)

�x

�m
e2��m{x ; x 2 R :

This function and all its derivatives belong to eHp(R): Moreover, we can estimate theireHp{norms by Lp{norms. That way we easily get thatg(k)�

eHp(R)
� C�k+1�1=p (k = 0; 1; : : :) :(3.16)

Also set

T�(x) =

nY
j=1

g�
�
xj
�
; x 2 Rn :
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This function belongs to eHp(Rn): Moreover, by (3.16), we have

kT�keHp(Rn)
� C�n(1�1=p)(3.17)

and Dr
jT�

eHp(Rn)
� C�r+n(1�1=p) ; j = 1 ; : : : ; n :(3.18)

Let us estimate the Fourier transform cT� from below. Observe that

sin(2��x)

�x
= d�[��;�](x) ; x 2 R :

Set Q(�) = [��; �]n; '� = �Q(�) and �� = '� ? � � � ? '� (m{fold convolution): Then

T�(x) = �(1�m)nc��(x)e
2��m{(x1+���+xn)

and cT�(�) = ��(�m� �1; : : : ; �m� �n)�
(1�m)n :

It is easy to see that

��(�) �
��
2

�(m�1)n
for all � 2 Q

�
21�m�

�
:

Thus, we have that cT�(�) � 0 for all � 2 Rn andcT�(�m� �1; : : : ; �m� �n) � 2(1�m)n ; if � 2 Q
�
21�m�

�
:(3.19)

Now let �� = 2�p!� : The sequence f��g1�=0 is increasing. It follows from the divergence
of the series (3.13) that �� !1 as � !1: Let f�kg be the sequence of integers de�ned
by (2.25). Set �k = T2�k+m and

f0(x) =
1X
k=1

!�k2
�kn(1=p�1)�k(x) ; x 2 Rn :

In view of (3.17), this series converges in eHp(Rn): As in the proof of Theorem 2.7, we
get that the real and imaginary parts of f0 belong to H

!;r
p (Rn):

Now, it follows from (3.19), thatbf0(k � �1; : : : ; k � �n) � C!�k2
�kn(1=p�1) (c > 0)

for every � 2 Q
�
2�k+1

�
; where k = m2�k+m: Let F0(�) =

�� bf0(�)�� j�jn(1�1=p): Then
F0(k � �1; : : : ; k � �n) � c0!�k for all � 2 Q

�
2�k+1

�
:

From here it follows that F ?
0

�
2n(�k+1)

� � c0!�k (c
0 > 0): Using this estimate, we obtainZ 1

1

F ?
0 (2t)

p�(t) dt �
1X
k=1

(��k+1 � ��k )F
?
0

�
2n�k+1+1

�p
� c0

1X
k=1

(��k+1 � ��k )!
p
�k+1

� c0(1� 2�p)

 
1X
k=2

��k!
p
�k
� �(1)!(1)p

!
:
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Observe now that

1X
k=1

��k!
p
�k

= 1 :

This follows from the divergence of the series (3.13) by the same argument that the
one in the proof of Theorem 2.7. The proof is completed 2

Thus, condition (3.13) is necessary and suÆcient in order to haveZ 1

0

F ?(t)p�(t) dt < 1

for every f 2 H!;r
p (Rn):
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