Short term evolution of artificial satellites

  1. Abad, A. 1
  2. San-Juan, J.F. 2
  3. Gavín, A. 1
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Celestial mechanics & dynamical astronomy

ISSN: 0923-2958

Año de publicación: 2001

Volumen: 79

Número: 4

Páginas: 277-296

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1023/A:1017540603450 SCOPUS: 2-s2.0-0043289052 GOOGLE SCHOLAR

Otras publicaciones en: Celestial mechanics & dynamical astronomy

Repositorio institucional: lock_openAcceso abierto Editor

Objetivos de desarrollo sostenible

Resumen

When the elimination of the parallax and the elimination of the perigee is applied to the zonal problem of the artificial satellite, a one-degree of freedom Hamiltonian is obtained. The classical way to integrate this Hamiltonian is by applying the Delaunay normalization, however, changing the time to the perturbed true anomaly and the variable to the inverse of the distance, the Hamilton equations become a perturbed harmonic oscillator. In this paper we apply the Krylov-Bogoliubov-Mitropolsky (KBM) method to integrate the perturbed harmonic oscillator as an alternative method to the Delaunay normalization. This method has no problem with small eccentricities and inclinations, and shows good numerical results in the evaluation of ephemeris of satellites.