Derivation of Optimal Experimental Design Methods for Applications in Cytogenetic Biodosimetry

  1. Higueras, Manuel 1
  2. López-Fidalgo, Jesús 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Navarra
    info

    Universidad de Navarra

    Pamplona, España

    ROR https://ror.org/02rxc7m23

Libro:
Statistical Methods at the Forefront of Biomedical Advances
  1. Yolanda Larriba (ed. lit.)

Editorial: Springer

ISBN: 9783031327285 9783031327292

Año de publicación: 2023

Páginas: 143-155

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-32729-2_7 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The definition of cytogenetic dose–response curves implies the irra-diation of in vitro blood samples to different ionizing radiation dose levels.Here, optimal experimental design techniques are applied to these curves. Thisoptimization is mainly focused on the selection of dose levels. As cytogenetic doseestimation leads to a calibration problem, an optimal design criterion for calibrationpurposes is explained here.

Referencias bibliográficas

  • International Atomic Energy Agency (IAEA). Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. IAEA, Vienna (2011)
  • Fedorov, V., Hackl, P. Model-Oriented Design of Experiments. Springer, New York (1997)
  • Atkinson, A.C., Donev, A.N., Tobias, R.D. Optimum Experimental Designs, with SAS. Oxford University Press, Oxford (2007)
  • Fedorov, V., Leonov, S. Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton (2013)
  • Ainsbury, E.A., Higueras, M., Puig. P., Einbeck, J., Samaga, D., Barquinero, J.F., Barrios, L., Brzozowska, B., Fattibene, P., Gregoire, E., Jaworska, A., Lloyd, D., Oestreicher, U., Romm, H., Rothkamm, K., Roy, L., Sommer, S., Terzoudi, G., Thierens, H., Trompier, F., Vral, A., Woda, C. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int. J. Radiat. Biol. 93, 127–135 (2017)
  • Higueras, M., Howes, H., López-Fidalgo, J. Optimal experimental design for cytogenetic dose-response calibration curves. Int. J. Radiat. Biol. 96, 894–902 (2020)
  • Kiefer J, Wolfowitz, J. The equivalence of two extremum problems. Can. J. Math. 12, 363–366 (1960)
  • Mendes, M.E., Mendonça, J.C.G., Barquinero, J.F., Higueras, M., Gonzalez, J.E., Andrade, A.M.G., Silva, L.M., Nascimento, A.M.S., Lima, J.C.F., Silva, J.C.G., Hwang, S., Melo, A.M.M.A., Santos, N., Lima, F.F. Comparative study of micronucleus assays and dicentric plus ring chromosomes for dose assessment in particular cases of partial-body exposure. Int. J. Radiat. Biol. 95, 1058–1071 (2019)
  • Lucas, J.N., Deng, W., Hsieh, W.A., Galvan, N., Gale, K.L., Morrison, D.P. Exposure temperature, but not donor age, is a confounding factor for in vitro translocation production by chronic irradiation. Int. J. Radiat. Biol. 75, 673–680 (1999)
  • Higueras, M., Ainsbury, E.A., Endesfelder, D. An improved statistical methodology for analysis of translocations for biodosimetry purposes. Session Biomarker II presented at the EPRBiodose 2018, Munich (2018). Abstract available at https://www.eprbiodose2018.org/fileadmin/EPRBiodose2018/PDF/EPRBioDose2018_abstracts_05-06-2018.pdf
  • Sigurdson, A.J., Ha, M., Hauptmann, M., Bhatti, P., Sram, R.J., Beskid, O., Tawn, E.J., Whitehouse, C.A., Lindholm, C., Nakano, M., Kodama, Y., Nakamura, N., Vorobtsova, I., Oestreicher, U., Stephan, G., Yong, L.C., Bauchinger, M., Schmid, E., Chung, H.W., Darroudi, F., Roy, L., Voisin, P., Barquinero, J.F., Livingston, G., Blakey, D., Hayata, I., Zhang, W., Wang, C., Bennett, L.M., Littlefield, L.G., Edwards, A.A., Kleinerman, R.A., Tucker, J.D. International study of factors affecting human chromosome translocations. Mutat. Res. 652, 112–121 (2008)
  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2021)