Potential energy surfaces for singlet and triplet states of the LiH2+ system and quasi-classical trajectory cross sections for H + LiH+ and H+ + LiH
- Javier Hernández-Rodríguez 12
- Cristina Sanz Sanz 1
- Pedro Alberto Enriquez 3
- Miguel Gonzalez 4
- Miguel Paniagua 1
-
1
Universidad Autónoma de Madrid
info
-
2
Universidad de Salamanca
info
-
3
Universidad de La Rioja
info
-
4
Universitat de Barcelona
info
ISSN: 1463-9084
Año de publicación: 2023
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Physical Chemistry Chemical Physics
Resumen
A new set of six accurate ab initio potential energy surfaces (PESs) is presentedfor the first three singlet and triplet states of LiH2+ (1,21A', 11A'', 1,23A', 13A'' states,where four of them are investigated for the first time), which have allowed new detailedstudies gaining a global view on this interesting system. These states are relevant for thestudy of the most important reactions of the lithium chemistry in the early universe.More than 45000 energy points were calculated using the multi-reference configurationinteraction level of theory using explicitly correlated methods (ic-MRCI-F12), and theresults obtained for each individual electronic state were fitted to an analytical function.Using quasiclassical trajectories and considering the initial diatomic fragment in theground rovibrational state, we have determined the integral cross sections for the H +LiH+(X2+, C2) and H+ + LiH(X1+, B1) reactions. In these calculations all availablereaction channels were considered: the chemically most important H or H+transfer/abstraction as well as atom exchange and collision induced dissociation for upto 1.0 eV of collision energy