Sustainable management of grapevine trunk diseases in vineyarddeliver biocontrol agents and associated molecules

  1. CUNHA MAIA LEAL, CATARINA DA
Zuzendaria:
  1. Josep Armengol Zuzendaria
  2. Patricia Gabrielle Trotel Aziz Zuzendaria
  3. David Gramaje Zuzendaria
  4. Florence Fontaine Zuzendaria

Defentsa unibertsitatea: Universitat Politècnica de València

Fecha de defensa: 2022(e)ko abendua-(a)k 07

Epaimahaia:
  1. Philippe Maurice Jacques Presidentea
  2. Marie-Claire Héloir Idazkaria
  3. Alban Jacques Kidea

Mota: Tesia

Laburpena

Grapevine (Vitis vinifera L.) plants are exposed to a wide variety of pathogens. Nowadays, grapevine fungal trunk diseases (GTDs) are amongst the main constraints for the productivity of this crop. Once infected, plant productivity is decreased, leading to a plant slow or apoplectic death. Investigation of biocontrol agents (BCAs) capable to forestall or at least to minimize the impact of GTDs, while being a sustainable treatment, is viewed as a research priority. One potential BCA was deeply characterized, and together with a biological commercial product, both BCAs were tested against several GTD pathogens, in greenhouse under controlled conditions, and during the grapevine propagation process. Results from the full genomic analysis of Bacillus subtilis PTA-271 (as BCA with a potential) show a functional swarming motility system, strong survival capacities and a set of genes encoding for bioactive substances known to stimulate plant growth or defenses, influence beneficial microbiota, and counteract pathogen aggressiveness. When tested against Neofusicoccum parvum Bt67 (thereafter Np-Bt67) in greenhouse cuttings, B. subtilis PTA-271 (Bs PTA-271) and T. atroviride SC1 (Ta SC1) proved that the cultivar contributes to their beneficial effects against Np-Bt67. The simultaneous application of both BCAs was further proved to be even more effective to protect Tempranillo cuttings. Moreover, the transcriptomic analysis from the same samples showed extensively the plant physiology changes induced by the pathogen but also by each BCA, Bs PTA-271 on Chardonnay and Ta SC1 on Tempranillo, to protect grapevine from Np-Bt67 infection. Thus, Chardonnay cuttings infected with Np-Bt67 showed overexpressed genes implicated on abscisic acid (ABA) biosynthesis and signaling pathways. In Tempranillo, the infection with Np-Bt67 leads to more substantial changes in gene expression, related mostly with amino acid import, chloroplast and photosystem related processes, plant responses to biotic stimulus, and biosynthesis of secondary metabolites. Protection induced by Bs PTA-271 in Chardonnay targets genes related to ABA biosynthesis, phenylpropanoid pathways and secondary metabolites, and cell wall structure/organization in relationship with carbohydrate metabolism that requires much more consideration. Protection with Ta SC1 in Tempranilllo requires a larger number of changes related to transporters, cell wall integrity and extension, cell division and pathogen induced cell death, multidirectional active proteins, and microbiome interactions. During the grapevine nursery process, the results demonstrated a significant reduction on the percentage of infected plants with Botryosphaeria dieback and Black-foot pathogens in the material treated with Ta SC1 and Bs PTA-271 respectively. The simultaneous treatments with both BCAs presented a reduction on infected plants with both Botryosphaeria dieback and Black foot pathogens. When testing the effect of Bs PTA- 271 and Ta SC1 in grapevine rhizosphere microbiome of two different soil infected with Black foot pathogens, results show that the inoculation of BCAs seems to improve the rhizosphere microbiome networks and sanitation status, however, the beneficial effect of BCAs can be soil-dependent. Moreover, as observed in the other experiments, the combination of both BCAs improves their beneficial effect in the rhizosphere microbiome. Overall, this study brought new insights on the use of one or more BCAs against several GTD pathogens, from nursery to adult grapevines. Moreover, highlighted both BCAs mode of action in grapevine protection. Thus, these findings provide, not only a better understanding of BCAs, grapevine, and pathogens interactions, but are also a strong contribution for the future development of sustainable GTDs management strategies.