The CARMENES search for exoplanets around M dwarfs

  1. Bello-García, A.
  2. Passegger, V. M.
  3. Ordieres-Meré, J.
  4. Schweitzer, A.
  5. Caballero, J. A.
  6. González-Marcos, A.
  7. Ribas, I.
  8. Reiners, A.
  9. Quirrenbach, A.
  10. Amado, P. J.
  11. Béjar, V. J. S.
  12. Cifuentes, C.
  13. Henning, Th.
  14. Kaminski, A.
  15. Luque, R.
  16. Montes, D.
  17. Morales, J. C.
  18. Pedraz, S.
  19. Tabernero, H. M.
  20. Zechmeister, M.
Zeitschrift:
Astronomy & Astrophysics

ISSN: 0004-6361 1432-0746

Datum der Publikation: 2023

Ausgabe: 673

Seiten: A105

Art: Artikel

DOI: 10.1051/0004-6361/202243934 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Astronomy & Astrophysics

Bibliographische Referenzen

  • Abadi M., Barham P., Chen J., et al. 2016, in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265
  • Allard, (2011), ASP Conf. Ser., 448, pp. 91
  • Andrews, (2018), MNRAS, 473, pp. 5393, 10.1093/mnras/stx2685
  • Antoniadis-Karnavas, (2020), A&A, 636, pp. A9, 10.1051/0004-6361/201937194
  • Awang Iskandar, (2020), Galaxies, 8, pp. 88, 10.3390/galaxies8040088
  • Bialek, (2020), MNRAS, 498, pp. 3817, 10.1093/mnras/staa2582
  • Bonfils, (2005), A&A, 442, pp. 635, 10.1051/0004-6361:20053046
  • Boyajian, (2012), ApJ, 757, pp. 112, 10.1088/0004-637X/757/2/112
  • Bressan, (2012), MNRAS, 427, pp. 127, 10.1111/j.1365-2966.2012.21948.x
  • Caballero, (2016), Proc. SPIE, 9910, pp. 99100E
  • Casagrande, (2008), MNRAS, 389, pp. 585, 10.1111/j.1365-2966.2008.13573.x
  • Chen, (2014), MNRAS, 444, pp. 2525, 10.1093/mnras/stu1605
  • Chen, (2015), MNRAS, 452, pp. 1068, 10.1093/mnras/stv1281
  • Cifuentes, (2020), A&A, 642, pp. A115, 10.1051/0004-6361/202038295
  • Czesla S., Schröter S., Schneider C. P., et al. 2019, Astrophysics Source Code Library, [record ascl:1906.010]
  • Demory, (2009), A&A, 505, pp. 205, 10.1051/0004-6361/200911976
  • Desidera, (2006), A&A, 454, pp. 581, 10.1051/0004-6361:20064896
  • Dhital, (2012), AJ, 143, pp. 67, 10.1088/0004-6256/143/3/67
  • Dittmann, (2016), ApJ, 818, pp. 153, 10.3847/0004-637X/818/2/153
  • Fabbro, (2018), MNRAS, 475, pp. 2978, 10.1093/mnras/stx3298
  • Brown, (2018), A&A, 616, pp. A1, 10.1051/0004-6361/201833051
  • Brown, (2021), A&A, 649, pp. A1, 10.1051/0004-6361/202039657
  • Gaidos, (2014), ApJ, 791, pp. 54, 10.1088/0004-637X/791/1/54
  • Gaidos, (2014), MNRAS, 443, pp. 2561, 10.1093/mnras/stu1313
  • Gao, (2018), Computer-Aided Civil Infrastruc. Eng., 33, pp. 748, 10.1111/mice.12363
  • Goodfellow I., Bengio Y., & Courville A. 2016, Deep Learning (Cambridge: MIT Press),
  • Han, (2021), AI Open, 2, pp. 225, 10.1016/j.aiopen.2021.08.002
  • Hartman, (2015), AJ, 149, pp. 166, 10.1088/0004-6256/149/5/166
  • Houdebine, (2019), AJ, 158, pp. 56, 10.3847/1538-3881/ab23fe
  • Husser, (2013), A&A, 553, pp. A6, 10.1051/0004-6361/201219058
  • Johnson, (2009), ApJ, 699, pp. 933, 10.1088/0004-637X/699/2/933
  • Karpathy A., & Fei-Fei L. 2015, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3128
  • Khata, (2020), MNRAS, 493, pp. 4533, 10.1093/mnras/staa427
  • Kielty, (2018), Int. Soc. Opt. Photon., 10707, pp. 107072W
  • Kraus, (2017), Decision Support Syst., 104, pp. 38, 10.1016/j.dss.2017.10.001
  • Lépine, (2013), AJ, 145, pp. 102, 10.1088/0004-6256/145/4/102
  • Maldonado, (2015), A&A, 577, pp. A132, 10.1051/0004-6361/201525797
  • Mann, (2013), AJ, 145, pp. 52, 10.1088/0004-6256/145/2/52
  • Mann, (2013), ApJ, 779, pp. 188, 10.1088/0004-637X/779/2/188
  • Mann, (2014), AJ, 147, pp. 160, 10.1088/0004-6256/147/6/160
  • Mann, (2015), ApJ, 804, pp. 64, 10.1088/0004-637X/804/1/64
  • Marfil, (2021), A&A, 656, pp. A162, 10.1051/0004-6361/202141980
  • McInnes, (2018), J. Open Source Softw., 3, pp. 861, 10.21105/joss.00861
  • Minglei, (2020), Optik, 218, pp. 165004, 10.1016/j.ijleo.2020.165004
  • Mittal, (2019), J. Syst. Architect., 99, pp. 101635, 10.1016/j.sysarc.2019.101635
  • Montes, (2018), MNRAS, 479, pp. 1332, 10.1093/mnras/sty1295
  • Nagel E., Czesla S., Kaminski A., et al. 2020, A&A, submitted
  • Neves, (2012), A&A, 538, pp. A25, 10.1051/0004-6361/201118115
  • Neves, (2014), A&A, 568, pp. A121, 10.1051/0004-6361/201424139
  • Newton, (2014), AJ, 147, pp. 20, 10.1088/0004-6256/147/1/20
  • Newton, (2015), ApJ, 800, pp. 85, 10.1088/0004-637X/800/2/85
  • O’Briain T., Ting Y.-S., Fabbro S., et al. 2020, ArXiv e-prints [arXiv:2007.03112]
  • Pan, (2010), IEEE Trans. Knowl. Data Eng., 22, pp. 1345, 10.1109/TKDE.2009.191
  • Passegger, (2018), A&A, 615, pp. A6, 10.1051/0004-6361/201732312
  • Passegger, (2019), A&A, 627, pp. A161, 10.1051/0004-6361/201935679
  • Passegger, (2020), A&A, 642, pp. A22, 10.1051/0004-6361/202038787
  • Passegger, (2022), A&A, 658, pp. A194, 10.1051/0004-6361/202141920
  • Quirrenbach, (2018), SPIE Conf. Ser., 10702, pp. 107020W
  • Quirrenbach, (2020), SPIE Conf. Ser., 114473, pp. 114473C
  • Rabus, (2019), MNRAS, 484, pp. 2674, 10.1093/mnras/sty3430
  • Raffel, (2020), J. Mach. Learn. Res., 21, pp. 1
  • Refaeilzadeh, (2009), Encyclopedia of Database Systems (Berlin: Springer), 5, pp. 532, 10.1007/978-0-387-39940-9_565
  • Reiners, (2018), A&A, 612, pp. A49, 10.1051/0004-6361/201732054
  • Rodríguez Martínez, (2019), AJ, 158, pp. 135, 10.3847/1538-3881/ab3347
  • Rojas-Ayala, (2010), ApJ, 720, pp. L113, 10.1088/2041-8205/720/1/L113
  • Rojas-Ayala, (2012), ApJ, 748, pp. 93, 10.1088/0004-637X/748/2/93
  • Sarkar D., Bali R., & Ghosh T. 2018, Hands-On Transfer Learning with Python: Implement Advanced Deep Learning and Neural Network Models Using TensorFlow and Keras (Birmingham, UK: Packt Publishing Ltd)
  • Schlaufman, (2010), A&A, 519, pp. A105, 10.1051/0004-6361/201015016
  • Schweitzer, (2019), A&A, 625, pp. A68, 10.1051/0004-6361/201834965
  • Scott D. W. 2015, Multivariate Density Estimation: Theory, Practice, and Visualization (Hoboken: John Wiley & Sons)
  • Ségransan, (2003), A&A, 397, pp. L5, 10.1051/0004-6361:20021714
  • Tabernero, (2022), A&A, 657, pp. A66, 10.1051/0004-6361/202141763
  • Tan C., Sun F., Kong T., et al. 2018a, in International Conference on Artificial Neural Networks (Berlin: Springer), 270
  • Tan C., Sun F., Kong T., et al. 2018b, in Artificial Neural Networks and Machine Learning - ICANN 2018, eds. Kurková V., Manolopoulos Y., Hammer B., Iliadis L., & Maglogiannis I. (Cham: Springer International Publishing), 270
  • Tang, (2014), MNRAS, 445, pp. 4287, 10.1093/mnras/stu2029
  • Terrell, (1992), Ann. Stat., 20, pp. 1236, 10.1214/aos/1176348768
  • Terrien, (2012), ApJ, 747, pp. L38, 10.1088/2041-8205/747/2/L38
  • Terrien, (2015), ApJ, 802, pp. L10, 10.1088/2041-8205/802/1/L10
  • Vabalas, (2019), PloS one, 14, pp. e0224365, 10.1371/journal.pone.0224365
  • van Leeuwen, (2007), A&A, 474, pp. 653, 10.1051/0004-6361:20078357
  • Vilalta, (2018), J. Phys. Conf. Ser., 1085, pp. 052014, 10.1088/1742-6596/1085/5/052014
  • von Braun, (2011), ApJ, 729, pp. L26, 10.1088/2041-8205/729/2/L26
  • von Braun, (2012), ApJ, 753, pp. 171, 10.1088/0004-637X/753/2/171
  • von Braun, (2014), MNRAS, 438, pp. 2413, 10.1093/mnras/stt2360
  • Wang, (2017), Information Sci., 412, pp. 210, 10.1016/j.ins.2017.05.047
  • Wei, (2020), MNRAS, 493, pp. 3178, 10.1093/mnras/staa325
  • Zechmeister, (2014), A&A, 561, pp. A59, 10.1051/0004-6361/201322746
  • Zechmeister, (2018), A&A, 609, pp. A12, 10.1051/0004-6361/201731483
  • Zechmeister, (2019), A&A, 627, pp. A49, 10.1051/0004-6361/201935460
  • Zhao, (2021), IEEE Transactions on Instrumentation and Measurement, 70, pp. 1