Minority grapevine varieties as climate change adaptation strategy: Exploring heat tolerance plasticity

  1. Francisco Emmanuel Espinosa-Roldán 1
  2. Gregorio Muñoz Organero 1
  3. Mercedes Uscola Fernández 2
  4. Félix Cabello Sáenz de Santa María 1
  5. Fernando Martínez De Toda 3
  1. 1 Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario
    info

    Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario

    Madrid, España

  2. 2 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  3. 3 Instituto de Ciencias de la Vid y del Vino
    info

    Instituto de Ciencias de la Vid y del Vino

    Logroño, España

    ROR https://ror.org/01rm2sw78

Actas:
BIO Web of Conferences. 43rd World Congress of Vine and Wine
  1. P. Roca (ed. lit.)

ISSN: 2117-4458

Año de publicación: 2023

Volumen: 56

Páginas: 1-7

Congreso: 43rd World Congress of Vine and Wine. Ensenada, Mexico, October 31-November 4, 2022

Tipo: Aportación congreso

DOI: 10.1051/BIOCONF/20235601029 GOOGLE SCHOLAR lock_openAcceso abierto editor
Repositorio institucional: lock_openAcceso abierto Editor

Resumen

Climate change is increasing average temperatures and intensity and frequency of extreme eventssuch as heat waves. Productivity declines and plant damage due to those changes are already described for severalmajority varieties, especially in the Mediterranean basin. Less explored minority varieties can arise asalternatives due high heat tolerance, or for having high acclimation potential to heat. We evaluated the heattolerance after acclimation in three summer thermic environments of four Spanish varieties: two majority(‘Tempranillo’, ‘Airén’) and two minority (‘Jarrosuelto’, ‘Morate’). Summer thermic environments differed inaverage temperature, and length of the warm period. Varieties differed in heat tolerance and its plasticity due tothe acclimation to the environments. Within the majority varieties, ‘Tempranillo’ showed low heat tolerance andmoderate plasticity in heat tolerance highlighting its susceptibility to climate change. ‘Airén’ had slightly highertolerance than ‘Tempranillo’ and certain adaptation capacity to environments. Within the minority, ‘Jarrosuelto’had high tolerance to heat events but low heat tolerance plasticity. ‘Morate’ was the variety with highest heattolerance plasticity, indicating its strong adaptive potential. Majority varieties displayed susceptibility to heatevents and global warming negative effects. However, minority varieties can offer solutions either by havinghigh tolerance to heat or by having high acclimation

Referencias bibliográficas

  • Fraga, (2012), Food Energy Sec, 1, pp. 94, 10.1002/fes3.14
  • OIV, Distributionoftheworld’sgrapevine varieties, 1-53 (2017)
  • OIV, Statistical report on world vitiviniculture, 1-23 (2019)
  • Resco P., Viticultura y cambio climático en España: Vulnerabilidad en las distintas regiones y estrategias de adaptación frente al desarrollo de nuevas políticas, 60 (2015)
  • Skirycz, (2010), Curr Opin Biotechnol, 21, pp. 197, 10.1016/j.copbio.2010.03.002
  • Van Leeuwen, (2016), J Wine Econ, 11, pp. 150, 10.1017/jwe.2015.21
  • Heras Hernández, (2018), Ambienta, 124, pp. 58
  • Martínez Navarro, (2004), Gaceta Sanitaria, 18, pp. 250, 10.1157/13062535
  • Sadras, (2012), Aust. J. Grape Wine Res, 18, pp. 115, 10.1111/j.1755-0238.2012.00180.x
  • Martínez De Toda, (2017), Zubia, 29, pp. 79
  • Cabello F., Ortíz J. M. M., Muñoz-Organero G., Rodríguez-Torres I., Benito B. A., Rubio C., De Andrés M. T. D., Variedades de Vid en España 1, (2020)
  • Webb, (2007), Aust. J. Grape Wine Res, 13, pp. 165, 10.1111/j.1755-0238.2007.tb00247.x
  • Comenge M., La vid y Los vinos españoles, 1-247 (1942)
  • Cabello F., 3ra Jornada Vitícola de Villena: El secreto está en la uva., 1-3 (2020)
  • Torregrosa, (2017), International journal of vine and wine, 51, pp. 155
  • Morales-Castilla, (2020), Proc. Natl. Acad. Sci. U.S.A, 117, pp. 2864, 10.1073/pnas.1906731117
  • Wolkovich, (2018), Nature climate change, 8, pp. 29, 10.1038/s41558-017-0016-6
  • Ferrandino, (2014), Environ Exp Bot, 103, pp. 138, 10.1016/j.envexpbot.2013.10.012
  • Rodríguez, (2000), Boletín de la A.G.E, 30, pp. 155
  • Schultz, (2000), Aust J Grape Wine R, 6, pp. 2, 10.1111/j.1755-0238.2000.tb00156.x
  • Cramer, (2011), BMC Plant Biol, 11, pp. 163, 10.1186/1471-2229-11-163
  • Zhang, (2005), J Integr Plant Biol, 47, pp. 959, 10.1111/j.1744-7909.2005.00109.x
  • Wahid, (2007), Environ Exp Bot, 61, pp. 199, 10.1016/j.envexpbot.2007.05.011
  • Zaka, (2016), AoB PLANTS, 8, pp. 1, 10.1093/aobpla/plw035
  • Zhou, (2018), Environ Exp Bot, 150, pp. 249, 10.1016/j.envexpbot.2018.04.001
  • Yamori, (2014), Photosynthesis Research, 119, pp. 101, 10.1007/s11120-013-9874-6
  • Gallo, (2021), Functional Plant Biology, 48, pp. 342, 10.1071/FP20212
  • Wang, (2003), Acta Hort Sin, 30, pp. 452
  • Larkindale, (2004), Environ Exp Bot, 51, pp. 57, 10.1016/S0098-8472(03)00060-1
  • Alley, (1997), Am J Enol Vitic, 28, pp. 1, 10.5344/ajev.1974.28.1.1
  • Xu, (2014), BMC plant biology, 14, pp. 1, 10.1186/1471-2229-14-1
  • Curtis, (2014), Oecologia, 175, pp. 1051, 10.1007/s00442-014-2988-5
  • Ritz, (2015), Plos One, 10, pp. 1, 10.1371/journal.pone.0146021
  • R Core Team, R: A language and environment for statistical computing (2021)
  • Zsófi, (2009), Functional plant biology, 36, pp. 310, 10.1071/FP08200
  • Uscola M., Comunicación propia (2022)
  • Gamon, (1990), Plant physiology, 92, pp. 487, 10.1104/pp.92.2.487
  • Zha, (2018), Vitis, 57, pp. 75