Deep Learning HSGP4: Hyperparameters analysis
- Edna Segura 1
- Hans Carrillo 1
- Rosario López Gómez 1
- Iván Pérez 1
- Montserrat San-Martín 2
- Juan F. San Juan 1
-
1
Universidad de La Rioja
info
-
2
Universidad de Granada
info
- Carolin Frueh (ed. lit.)
- Renato Zanetti (ed. lit.)
- Jeffrey R. Stuart (ed. lit.)
- Angela L. Bowes (ed. lit.)
Verlag: Univelt Inc.
ISSN: 0065-3438
ISBN: 978-0-87703-679-1
Datum der Publikation: 2021
Ausgabe: 176
Seiten: 1299 - 1313
Kongress: 31th AAS/AIAA Space Flight Mechanics Meeting. February 1–3, 2021, Virtual Event
Art: Konferenz-Beitrag
beta Ver similares en nube de resultadosZusammenfassung
The hybrid orbit propagation methodology is used to model the error of any type of orbitpropagator with the aim of improving its perturbation model or integration technique andhence enhancing its accuracy. In this work, we present an application of the hybrid meth-odology, in which the time-series forecasting process is performed using deep learningmethod to SGP4. We have adjusted the resulting Hybrid SGP4 propagator, HSGP4, to thecase of Galileo-type orbits. We will describe the hyper-parameter selection, which is animportant part of the development of HSGP4, and show how HSGP4 can improve theaccuracy of SGP4.